Introduction to GAN's

John Thickstun

Transforming Random Variables

• Suppose I have access to samples from $\mathcal{N}(0,1)$.

• But I want samples from $\mathcal{N}(\mu, \sigma^2)$.

• Let $g(x)=\mu+\sigma x$. If $\varepsilon\sim\mathcal{N}(0,1)$ then $g(\varepsilon)\sim\mathcal{N}(\mu,\sigma^2)$.

Inverse Transform Sampling

• I have samples from $\mathrm{Uniform}([0,1])$. I want samples with CDF F.

• Define the inverse CDF by $F^{-1}(u) = \inf\{x : F(x) \ge u\}$.

• If $u \sim \operatorname{Uniform}([0,1])$, then $F^{-1}(u)$ is distributed according to F.

The Idea Behind GAN's

• I have access to samples from a simple distribution q on space \mathcal{Z} .

• I want samples from some complicated distribution p on space \mathcal{X} .

• Learn a function $g: \mathcal{Z} \to \mathcal{X}$ such that, if $z \sim \rho$, then $g(z) \sim p$.

The Potential of The GAN Idea

Large Scale GAN Training For High Fidelity Natural Image Synthesis [Brock, Donahue, and Simonyan (2019)]

Pushforward Distributions

• Given a distribution ρ on \mathcal{Z} , $g:\mathcal{Z}\to\mathcal{X}$ induces a distribution on \mathcal{X} .

• For any set $A \subset \mathcal{X}$, $\Pr(A) \equiv \Pr(g^{-1}(A))$.

•
$$\Pr(g^{-1}(A)) = \int_{g^{-1}(A)} \rho(z) dz = \int_A \rho(g^{-1}(A)) |\nabla_x g^{-1}(x)| dx.$$

Learning from Samples

• Given finite samples $x_1, \ldots, x_n \sim p$, unlimited samples $z \sim \rho$

• Learn a function $g_{\theta}: \mathcal{Z} \to \mathcal{X}$, which induces a distribution p_{θ} on \mathcal{X} .

• Learn the parameters so that $p_{\theta} \approx p$.

Maximize the Likelihood?

• Find a function that makes the observed data likely:

$$\sup_{\theta} \mathbb{E} \log p_{\theta}(x) \approx \sup_{\theta} \frac{1}{n} \sum_{i=1}^{n} \log p_{\theta}(x_i).$$

• How do we compute $p_{\theta}(x_i)$?

$$p_{\theta}(x_i) = q(g_{\theta}^{-1}(x_i)) |\nabla_x g_{\theta}^{-1}(x_i)|.$$

That doesn't look fun!

What Are Our Options?

- Write down parameterized families with simple inverses and Jacobians
 - Dinh et al. 2017, Kingma and Dhariwal 2018
- Suck it up and compute the inverses and Jacobians
 - Hand and Voroninski 2019, Ma et al. 2018
- Give up and try something else (GAN)
 - Goodfellow et al. 2014, Brock et al. 2018

Towards the GAN

• Remember our broad goal: find a pushforward $g_{\theta}: \mathcal{Z} \to \mathcal{X}$ so that $p_{\theta} \approx p$.

How do we define similarity/divergence between distributions?

How do we compute/estimate the similarity?

Distributional f-Divergence

• Let $f: \mathbb{R} \to \mathbb{R}$ be convex, lower-semicontinuous, and f(0) = 1:

$$D_f(p||q) \equiv \int_{\mathcal{X}} q(x) f\left(\frac{p(x)}{q(x)}\right) dx.$$

• For example, if $f(x) = x \log x$ then $D_f(p||q)$ is KL-divergence.

• We can construct lower bounds on an f-divergence.

Lower Bounds on f-Divergences

• For any function $T: \mathcal{X} \to \mathbb{R}$, [Nguyen, Wainwright, and Jordan 2010]

$$D_f(p||q) \ge \mathop{\mathbb{E}}_{x \sim p} T(x) - \mathop{\mathbb{E}}_{x \sim q} f^*(T(x)).$$

• The function $f^*: \mathbb{R} \to \mathbb{R}$ is the convex conjugate of f:

$$f^*(t) \equiv \sup_{x} \{tx - f(x)\}.$$

• The lower bound only uses samples! No need to evaluate p(x).

GAN's in Broad Strokes

Solve a saddle-point problem

$$\theta_f = \operatorname*{arg\,inf\,sup}_{\theta} \left[\underset{x \sim p}{\mathbb{E}} T_{\phi}(x) - \underset{z \sim \rho}{\mathbb{E}} f^*(T_{\phi}(g_{\theta}(z))) \right].$$

• Use an expressive parameterized family of functions $T_\phi:\mathcal{X} o\mathbb{R}$.

• Adversarial: g_{θ} wants to minimize the objective, and T_{ϕ} wants to maximize.

Proof of the Lower Bound

• Fenchel duality: $f(x) = \sup_{t} \{tx - f^*(t)\}.$

$$D_f(p||q) = \int_{\mathcal{X}} q(x) \sup_{t} \left[t \frac{p(x)}{q(x)} - f^*(t) \right] dx$$

$$= \int_{\mathcal{X}} \sup_{t} \left[t p(x) - f^*(t) q(x) \right] dx$$

$$= \sup_{T: \mathcal{X} \to \mathbb{R}} \int_{\mathcal{X}} \left(T(x) p(x) - f^*(T(x)) q(x) \right) dx$$

$$= \sup_{T: \mathcal{X} \to \mathbb{R}} \left[\underset{x \sim p}{\mathbb{E}} T(x) - \underset{x \sim q}{\mathbb{E}} f^*(T(x)) \right].$$

GAN's in Broad Strokes

Solve a saddle-point problem

$$\theta_f = \operatorname*{arg\,inf\,sup}_{\theta} \left[\underset{x \sim p}{\mathbb{E}} T_{\phi}(x) - \underset{z \sim \rho}{\mathbb{E}} f^*(T_{\phi}(g_{\theta}(z))) \right].$$

• Use an expressive parameterized family of functions $T_\phi:\mathcal{X} o\mathbb{R}$.

• Adversarial: g_{θ} wants to minimize the objective, and T_{ϕ} wants to maximize.

The Goodfellow GAN

• Pick a divergence, e.g. $f(x) = x \log x - (x+1) \log(x+1)$ results in

$$D_f(p||q) \equiv 2JSD(p,q) - \log(4).$$

• Compute the convex conjugate (hint: calculus). In this case:

$$f^*(t) = -\log(1 - e^t).$$

• Parameterizing $T_{\phi}(x) = \log(d_{\phi}(x))$ results in

$$\theta_f = \underset{\theta}{\operatorname{arg inf sup}} \left[\underset{x \sim p}{\mathbb{E}} \log d_{\phi}(x) + \underset{z \sim \rho}{\mathbb{E}} \log(1 - d_{\phi}(g_{\theta}(z))) \right].$$

The Discriminator Perspective

The GAN objective looks a bit like a binary cross-entropy loss:

$$\underset{x \sim p}{\mathbb{E}} \log d_{\phi}(x) + \underset{z \sim \rho}{\mathbb{E}} \log(1 - d_{\phi}(g_{\theta}(z))).$$

• We can formalize this observation. Let $y \sim \mathrm{Bernoulli}(.5)$ and define

$$r_{ heta}(x|y=0)=p_{ heta}(x)$$
 $r_{ heta}(x|y=1)=p(x).$ (y labels whether x comes from $p_{ heta}$ or p)

• Let $p_{\phi}(y|x) = \mathrm{Bernoulli}(d_{\phi}(x))$. The objective can be re-written as

$$\mathbb{E}_{\substack{y \sim \text{Bernoulli}(.5)\\ x \sim r_{\theta}}} \log p_{\phi}(y|x) = -H(r(y|x), p_{\phi}(y|x)).$$

The Bayes-Optimal Classifier

• Think of $p_{\phi}(y|x) = \mathrm{Bernoulli}(d_{\phi}(x))$ as a classifier that predicts y given x.

• The Bayes optimal classifier (for a given generator g_{θ}) is $r_{\theta}(y|x)$.

• Bayes' rule:
$$r(y=1|x) = \frac{r(x|y=1)r(y=1)}{r(x)} = \frac{p(x)}{p(x) + p_{\theta}(x)}$$

Coming Full-Circle

What if we just plug the optimal classifier into the GAN objective?

$$\sup_{\phi} \left[\underset{x \sim p}{\mathbb{E}} \log d_{\phi}(x) + \underset{z \sim \rho}{\mathbb{E}} \log(1 - d_{\phi}(g_{\theta}(z))) \right]$$

$$= \underset{x \sim p}{\mathbb{E}} \log \frac{p(x)}{p(x) + p_{\theta}(x)} + \underset{z \sim \rho}{\mathbb{E}} \log \left(1 - \frac{p(g_{\theta}(z))}{p(g_{\theta}(z)) + p_{\theta}(g_{\theta}(z))} \right)$$

• Don't need to solve a saddle point problem! But we can't evaluate p(x)...

Running a GAN on Data

Training Curves

Orange: Generator loss, Blue: Discriminator loss

Lingering Questions

• There are lots of saddle-points in this space! How do we find a good one?

How do we evaluate our results? What makes a saddle-point good?

• Ethical concerns: how do we interact with media in the age of deepfakes?