Introduction to GAN’s
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Transforming Random Variables

e Suppose | have access to samples from N(0, 1).
e But | want samples from N (i, 0%).

e Let g(z) =p+ozx.If e ~N(0,1) then g(e) ~ N (i, o).



Inverse Transform Sampling

| have samples from Uniform(|0, 1]). | want samples with CDF F..
o Define the inverse CDF by F~'(u) = inf{z : F(z) > u}.

e If u~ Uniform([0,1]), then F~*(u) is distributed according to F.



The Idea Behind GAN’s

e | have access to samples from a simple distribution ¢ on space Z.
e | want samples from some complicated distribution p on space AX.

* Learn afunction g: Z2 — X such that, if z ~ p, then g(z) ~ p.



The Potential of The GAN Idea

Large Scale GAN Training For High Fidelity Natural Image Synthesis
[Brock, Donahue, and Simonyan (2019)]



Pushforward Distributions

» Given a distribution pon Z, g : Z — X induces a distribution on X.
e Foranyset A C X, Pr(4) =Pr(g '(A)).

P = [ e = [ T )V @)l



Learning from Samples

* Given finite samples z1,...,x, ~ p, unlimited samples z ~ p
e |Learn a function gy : Z2 — &, which induces a distribution pg on X'.

 |Learn the parameters so that py ~ p.



Maximize the Likelihood?

* Find a function that makes the observed data likely:

1 (4’
sup [E logpg(x) ~ sup — log pg(x;).
1 E logpo(a) ~sup 3 logpa(as

 How do we compute pg(x;)?

po(xi) = q(gy ()| Vagy  (z3)].

e That doesn’t look fun!



What Are Our Options?

* Write down parameterized families with simple inverses and Jacobians
 Dinh et al. 2017, Kingma and Dhariwal 2018

 Suck it up and compute the inverses and Jacobians
e Hand and Voroninski 2019, Ma et al. 2018

* Give up and try something else (GAN)

 Goodfellow et al. 2014, Brock et al. 2018



Towards the GAN

 Remember our broad goal: find a pushforward gy : £ — & so that ps = p.
 How do we define similarity/divergence between distributions??

« How do we compute/estimate the similarity?



Distributional f-Divergence

o Let f: R — R be convex, lower-semicontinuous, and f(0) = 1:
p(z)
quz/qxf( )dm.
lla) = | a@)f (T
» For example, if f(z) = zlogx then D¢ (p||q) is KL-divergence.

* \We can construct lower bounds on an f-divergence.



Lower Bounds on f-Divergences

 Forany function T": X — R, [Nguyen, Wainwright, and Jordan 2010]

Df(pllg) 2 E T(x) = E f(T(x)).

T~P Tr~q

e The function f* : R — R is the convex conjugate of /:

fr(t) = Sgp{tfﬁ — f()}.

» The lower bound only uses samples! No need to evaluate p(z).



GAN'’s in Broad Strokes

e Solve a saddle-point problem

0f =arginfsup | E Ty(x) — E f(Ts(g0(2)))] -
o b |z~p 2~op ]

e Use an expressive parameterized family of functions 14 : X — R.

* Adversarial: go wants to minimize the objective, and 7, wants to maximize.



Proof of the Lower Bound

* Fenchel duality: f(z) = sup{tx — f*(t)}.

Dy (pllg) = /X q(x) sup _tzgg f*(t)_ dx

_ /X sup [tp(z) — £*(H)q(z)] da

t

— sup /X (T(2)p(z) — f*(T(2))a(z)) da

T:X —R

sup i T(x) — E f*(T(w)) .

T:X—R | L~DP r~q



GAN'’s in Broad Strokes

e Solve a saddle-point problem

0f =arginfsup | E Ty(x) — E f(Ts(g0(2)))] -
o b |z~p 2~op ]

e Use an expressive parameterized family of functions 14 : X — R.

* Adversarial: go wants to minimize the objective, and 7, wants to maximize.



The Goodfellow GAN

* Pick a divergence, e.g. f(z) = xlogx — (x 4+ 1) log(x + 1) results in

Dy (pllq) = 2JSD(p, q) — log(4).

 Compute the convex conjugate (hint: calculus). In this case:
f*(t) = —log(1 — ¢€).

» Parameterizing T, (z) = log(dys(x)) results in

0f = arginfsup | E logdy(x)+ E log(l —ds(ge(2)))] -
6 ¢ |z~p 2~ _



The Discriminator Perspective

 The GAN obijective looks a bit like a binary cross-entropy loss:

¢ logdy(x) + E log(1l —dy(gs(2))).

TP Zr~p

e \We can formalize this observation. Let y ~ Bernoulli(.5) and define
ro(z|ly = 0) = po(z)
ro(zly = 1) = p(x).

e Let py(y|x) = Bernoulli(dy(x)). The objective can be re-written as

( y labels whether x comes from po orp )

k- logpylylr) = —H(r(ylz), pe(y|r)),
y~Bernoulli(.5)
r~Te




The Bayes-Optimal Classifier

* Think of p,(y|z) = Bernoulli(dy(z)) as a classifier that predicts y given x.

* The Bayes optimal classifier (for a given generator go) is r¢(y|x).

e Bayes’rule: r(y = 1|z) = r(zly = Dr(y =1) _ p(z)

r(z) p(x) + po ()




Coming Full-Circle

 What if we just plug the optimal classifier into the GAN objective?

sup | E logdy(z) + E log(1l —dg(ge(2)))

b |LxT~D 204 % _
o . p(ge(2))
- x;pl > 0(x) + polx) Zf\jpl > (1 p(ge(z)) +pe(ge(2)))

» Don’t need to solve a saddle point problem! But we can’t evaluate p(x)...



Running a GAN on Data
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Training Curves
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Orange: Generator loss, Blue: Discriminator loss



Lingering Questions

* There are lots of saddle-points in this space! How do we find a good one?
 How do we evaluate our results? What makes a saddle-point good??

* Ethical concerns: how do we interact with media in the age of deepfakes?



