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Suppose we want to sample from a Gaussian distribution with mean µ and variance σ2. If
we have access to samples from a standard Gaussian ε ∼ N (0, 1), then it’s a standard exercise in
classical statistics to show that µ + σε ∼ N (µ, σ2). This is a simple example of a pushforward
distribution. If g(x) = µ + σx and ε ∼ N (0, 1), then g(ε) ∼ N (µ, σ2); the function g “pushes
forward” the distribution N (0, 1) on its domain to the distribution N (µ, σ2) on its codomain.

Generative adversarial networks [Goodfellow et al., 2014] build upon this simple idea. Suppose
we want to draw samples from some complicated distribution p(x). Given a latent code z ∼ q, where
q is some simple distribution like N (0, I), we will tune the parameters of a function gθ : Z → X
so that gθ(z) is distributed approximately like p. The function gθ is usually taken to be a neural
“generator” network.

Pushforward Distributions

Pushfoward distributions are commonly seen in numerical computing, as a means to generate
samples from one distribution given samples from another distribution. For example, suppose I
have a software package that provides me pseudorandom samples from the uniform distribution on
[0, 1], but I want samples from a distribution p with a CDF given by F : R → [0, 1]. Define the
inverse CDF by

F−1(u) = inf{x : F (x) ≥ u}. (1)

Given u ∼ Uniform([0, 1]), it follows that F−1(u) ∼ p:

Pr(F−1(u) ≤ x) = Pr(u ≤ F (x)) = F (x). (2)

This technique is called inverse tranform sampling, and is based on the observation that the push-
forward of the uniform distribution through the inverse-CDF of p is the distribution p. More
specialized samplers like the Box-Muller transform [Box and Muller, 1958] and the Gumbel-Max
trick [Gumbel, 1954] are also based on the pushforward principle.

The general idea of pushforwards is that, given a distribution on a measurable space Z, a
measurable function g : Z → X induces a distribution on X . This distribution is defined, for any
measurable set A ⊂ X , by

Pr(A) ≡ Pr(g−1(A)). (3)

If the distribution on Z is absolutely continuous then we can expand the latter probability as an
integral over a density ρ(z). Changing variables from z to x, we find that

Pr(g−1(A)) =

∫
g−1(A)

ρ(z) dz =

∫
A
ρ(g−1(A))|∇xg−1(x)| dx. (4)

Therefore, the density ρ(z) pushes forward to a density pg(x) defined by

pg(x) ≡ ρ(g−1(x))|∇xg−1(x)|. (5)
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Learning a Pushforward Distribution

Given a finite set of samples x1, . . . , xn ∼ p and access to unlimited samples z ∼ q, our goal is to
learn a parameterized function gθ : Z → X such that gθ(z) is distributed approximately like p(x).
From the discussion in the previous section we see that, for any parameter set θ, gθ(x) ∼ pθ where
pθ(x) is the pushforward distribution induced by gθ. So another way of framing our goal is that we
want to find θ such that pθ ≈ p.

To talk about approximations, we need to put a topology on the space of probability measures.
By far the most popular topology on probabilities is the topology of KL divergence. In this setting,
our goal would be to minimize D(p ‖ pθ). This is equivalent to maximum likelihood estimation:

inf
θ
D(p ‖ pθ) = inf

θ
H(p) +D(p ‖ pθ) = inf

θ
E
x∼p
− log

pθ(x)

p(x)
p(x) = sup

θ
E
x∼p

log pθ(x). (6)

This looks promising, because we can approximate the expectation using a finite sum over samples
(training data) xi ∼ p. But there is a problem. Recall from Equation (5) that pθ(x) is defined in
terms of g−1θ (x) and ∇xg−1θ (x). If gθ is a rich family of functions (e.g. a neural network) it can be
very difficult to compute the inverse image of a point and its Jacobian.

From here, there are two or three directions we could take. One option is to write down restricted
function families gθ for which we can explicitly and efficiently compute inverses and Jacobians. This
approach is taken by Dinh et al. [2017], Kingma and Dhariwal [2018], and trades of expressivity
in the parameterization of the model for computational tractability. Another option is to try to
conquer the challenge of computing inverses and Jacobians for more general function families. This
approach is less well-developed, but is partially addressed by Hand and Voroninski [2019], Ma et al.
[2018]. The third route is to construct an estimate of the objective, e.g. Equation (6), and optimize
with respect to this proxy estimate; this later approach is taken by the Generative Adversarial
Network.

Generative Adversarial Networks

A Generative Adversarial Network (GAN) is an optimization procedure for training a pushforward
distribution pθ(x) to match samples from a target distribution x1, . . . , xn ∼ p. This is made difficult
because we cannot easily evaluate pθ(x) when this distribution is implicitly defined by a complicated
pushforward function gθ : Z → X . The idea of GAN is to set up a saddle point problem: in the
inner optimization, we attempt to construct a good lower bound on our measure of divergence
between p and pθ (e.g. the KL-divergence). In the outer optimization, we attempt to minimize
this lower bound. In this section, we derive the general form of a saddle point GAN objective
for a broad class information divergences known as f -divergences [Csiszár, 1964, Ali and Silvey,
1966]. Among this class are the KL-divergence based maximum likelihood estimator (6) and the
Jensen-Shannon divergence used to construct the Goodfellow GAN.

An f -divergence generalizes the KL-divergence between two probability distributions. Given a
convex, lower-semicontinuous function f : R → R such that f(1) = 0, we define the f -divergence
between two distributions p and q by

Df (p ‖ q) ≡
∫
X
q(x)f

(
p(x)

q(x)

)
dx. (7)

For example, if we take f(x) = x log x then Df (p ‖ q) = D(p ‖ q). What’s interesting about f -
divergences is that we can construct a lower bound on the quantity Df (p ‖ q) that doesn’t require
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evaluation of q(x) [Nguyen et al., 2010], which allows us to circumvent the challenge of evaluating
f -divergences for pushforward distributions q = pθ.

The idea is to construct a variational representation of the f -divergence using a variational rep-
resentation of the function f . To construct this representation, we introduce the convex conjugate
of f , defined by

f∗(t) ≡ sup
x
{tx− f(x)}. (8)

We will exploit a basic fact about convex conjugates known as “Fenchel duality” [Rockafellar, 1970]:
repeat application of the conjugate operation to a convex, lower-semicontinuous function f yields
f∗∗ = f . This allows us to write a variational expression for f :

f(x) = sup
t
{tx− f∗(t)}. (9)

In the following proposition, we see how to convert this representation of f(x) into a variational
representation of Df (p ‖ q).

Proposition. [Nguyen, Wainwright, and Jordan, 2010]

Df (p ‖ q) = sup
T :X→R

[
E
x∼p

T (x)− E
x∼q

f∗(T (x))

]
. (10)

Proof. Using the variational representation of f given by Equation (9),

Df (p ‖ q) =

∫
X
q(x) sup

t

[
t
p(x)

q(x)
− f∗(t)

]
dx (11)

=

∫
X

sup
t

[tp(x)− f∗(t)q(x)] dx (12)

= sup
T :X→R

∫
X

(T (x)p(x)− f∗(T (x))q(x)) dx (13)

= sup
T :X→R

[
E
x∼p

T (x)− E
x∼q

f∗(T (x))

]
.

The f -GAN uses the variational form of the f -divergence given by Equation (10) to set up a
saddle point problem [Nowozin et al., 2016]. Observe that any choice of function T in Equation
(10) gives us a lower bound on the f -divergence, and moreover this lower bound can be evaluated
using samples from q without explicitly evaluating q(x). Using an expressive parameterized family
of functions Tϕ to approximate the optimal function T , we can minimize an f -divergence between
p and a pushforward distribution pθ by solving the following saddle point problem:

θf = arg inf
θ

sup
ϕ

[
E
x∼p

Tϕ(x)− E
x∼pθ

f∗(Tϕ(x))

]
(14)

= arg inf
θ

sup
ϕ

[
E
x∼p

Tϕ(x)− E
z∼ρ

f∗(Tϕ(gθ(z)))

]
. (15)

The Goodfellow GAN [Goodfellow et al., 2014] is an instance of the more template GAN ob-
jective given by Equation (15). To turn the template into an actual objective, we need to specify
a particular f -divergence along with the parameterizations of the pushforward function fθ and
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the variational approximator Tϕ. Goodfellow et. al. use a modified Jensen-Shannon divergence
objective, defined by

GAN(p, q) ≡ 2JSD(p, q)− log(4) = DKL

(
p

∣∣∣∣∣∣∣∣p+ q

2

)
+DKL

(
pg

∣∣∣∣∣∣∣∣p+ q

2

)
− log(4). (16)

The GAN objective can be expressed as an f -divergence by setting f(x) = x log x−(x+1) log(x+1),
and a straightforward computation reveals that f∗(t) = − log(1 − et). Parameterizing Tϕ(x) =
log(dϕ(x)), from Equation (15) we find that the Goodfellow GAN objective is given by

θf = arg inf
θ

sup
ϕ

[
E
x∼p

log dϕ(x) + E
z∼ρ

log(1− dϕ(gθ(z)))

]
. (17)

The Discriminator Perspective

If you squint at Equation (17), you may notice that it looks like a binary cross-entropy loss.
Let y ∼ Bernoulli(.5) and consider the mixture distribution rθ(x) defined by the conditionals
rθ(x|y = 0) = pθ(x) and rθ(x|y = 1) = p(x). We can interpret the latent variable y as a “class label,”
that indicates whether x comes from the pushforward distribution pθ(x) or the target distribution
p(x). Defining pϕ(y|x) = Bernoulli(dϕ(x)) allows us to rewrite the objective of Equation (16) as a
formal, conditional cross-entropy

E
y∼Bernoulli(.5)

x∼rθ

log pϕ(y|x) = −H(r(y|x), pϕ(y|x)) ≤ 0. (18)

Therefore, we can think of dϕ(x) as a parameterization of a classifier pϕ(y|x) that predicts whether
a given point x was sampled from the data generating distribution p, or from the pushfoward
distribution pθ. This motivates the colloquial description of the network dϕ(x) as a “discriminator.”

From Equation (18), we see that the optimal discriminator that maximizes (17) for a given
generator gθ is given by the posterior distribution r(y|x). This can be expressed by Bayes’ rule as

r(y = 1|x) =
r(x|y = 1)r(y = 1)

r(x)
=

p(x)

p(x) + pθ(x)
. (19)

Plugging the optimal discriminator into (16) and manipulating the algebra, we can show that

sup
ϕ

[
E
x∼p

log dϕ(x) + E
z∼ρ

log(1− dϕ(gθ(z)))

]
(20)

= E
x∼p

log
p(x)

p(x) + pθ(x)
+ E
z∼ρ

log

(
1− p(gθ(z))

p(gθ(z)) + pθ(gθ(z))

)
(21)

= DKL

(
p

∣∣∣∣∣∣∣∣p+ pg
2

)
+DKL

(
pg

∣∣∣∣∣∣∣∣p+ pg
2

)
− log 4 (22)

= 2JSD(p, q)− log(4). (23)

This is consistent with the dual calculations performed in the previous Section.
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