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Theorem. (Markov) For any h : R→ [0,∞) and a > 0,

P (h(X) ≥ a) ≤ Eh(X)

a
.

Proof. Because h(X) ≥ 0, clearly a1h(X)≥a ≤ h(X). By monotonicity of expectation,

aP (h(X) ≥ a) = aE(1h(X)≥a) = E(a1h(X)≥a) ≤ Eh(X).

�

If h(x) = |x| then we have P (|X| ≥ a) ≤ E|X|
a . This is the classic Markov inequality.

Note that without further assumptions, the bound is sharp. In particular, consider the
deterministic random variable X = c. In the case when c ≥ a,

P (|X| ≥ a) = 1c≥a =
E|X|
a

.

We can get different bounds by investigating various choices of h.

Theorem. (Chebyshev) If VarX <∞ then

P (|X| ≥ a) ≤ EX2

a2
.

Proof. Take h(x) = x2 and by Markov’s inequality,

P (|X| ≥ a) = P (X2 ≥ a2) = P (h(X) ≥ a2) ≤ Eh(X)

a2
.

�

If we consider Y = X − EX then we get a central inequality

P (|X − EX| ≥ a) = P (|Y | ≥ a) ≤ EY 2

a2
=

VarX

a2
.

Again this bound is tight. Suppose X is distributed on {−a, 0, a} according to

p(x) =


p if x = −a
p if x = a

1− 2p if x = 0

Then
VarX

a2
=

2pa2

a2
= 2p = P (|X| ≥ a).
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The same style of argument implies a bound for each moment E|X|k. Finding the k that
gives us the best bound, gives us the following inequality.

Proposition. If E|X|k <∞ for all k, then for all a > 0

P (|X − EX| ≥ a) ≤ min
k>0

E|X|k

ak
.

We can also get bounds using an exponential, sometimes called the exponential Cheby-
shev inequalities

P (X ≥ a) ≤ e−taEetX .
There is some intuition that, because the mgf MX(t) ≡ EetX encodes all the moments of
X, these bounds will be at least as good as (better than?) the moment bounds. But I don’t
have a good grasp of this. Minimizing these bounds over t gives us an abstract Chernoff
bound.

Theorem. (Chernoff) If MX exists and ε > 0 then

P (X ≥ ε) ≤ min
t
e−tεEetX .

Considering random variables with additional structure will let us get sharper results.
First let’s consider what happens when X is bounded; i.e. X ∈ [a, b].

Lemma. (Hoeffding) Let EX = 0 with X ∈ [a, b] almost surely. Then

EetX ≤ exp

(
1

8
t2(b− a)2

)
.

Proof. Because X ∈ [a, b], we can write X as a convex combination X = αb+ (1−α)a and
in particular

α =
X − a
b− a

, (1− α) =
b−X
b− a

.

By convexity of the exponential,

etX ≤ αetb + (1− α)eta =
X − a
b− a

etb +
b−X
b− a

eta.

Define L(h) = −hp + log(1 − p + peh) where h = t(b − a) and p = −a/(b − a). Because
EX = 0,

EetX ≤ − a

b− a
etb +

b

b− a
eta = eL(h).

By Taylor’s theorem, there is some z ∈ (0, h) with

L(h) = L(0) + hL′(0) +
1

2
h2L′′(z).

Note that L(0) = L′(0), and L′′(z) ≤ 1/4 (see https://en.wikipedia.org/wiki/Hoeffding%
27s_inequality#Proof_of_Hoeffding.27s_Lemma). We conclude that

L(h) =
1

2
h2L′′(z) ≤ 1

8
h2 =

1

8
t2(b− a)2. �

https://en.wikipedia.org/wiki/Hoeffding%27s_inequality#Proof_of_Hoeffding.27s_Lemma
https://en.wikipedia.org/wiki/Hoeffding%27s_inequality#Proof_of_Hoeffding.27s_Lemma
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Combining Hoeffding’s Lemma with the abstract Chernoff bound described above gives
us our first version of the Chernoff-Hoeffding bound.

Theorem. (Chernoff-Hoeffding) If EX = 0 with X ∈ [a, b] almost surely then

P (X ≥ ε) ≤ exp

(
− 2ε2

(b− a)2

)
.

Proof. If X is restricted to [a, b] then clearly MX exists. By Chernoff’s bound and Hoeffd-
ing’s lemma respectively,

P (X ≥ ε) ≤ min
t
e−tεEetX ≤ min

t
e−tε exp

(
1

8
t2(b− a)2

)

= min
t

exp

(
1

8
t2(b− a)2 − tε

)
= exp

(
min
t

1

8
t2(b− a)2 − tε

)
.

The quadratic is minimized when

1

4
t(b− a)2 − ε = 0.

In particular we will get the sharpest bound when t = 4ε/(b− a)2. In this case

P (X ≥ ε) ≤ exp

(
2ε2

(b− a)2
− 4ε2

(b− a)2

)
= exp

(
− 2ε2

(b− a)2

)
.

�

Corollary. Let µ = EX with X ∈ [a, b] almost surely. Then

P (X ≤ EX + ε) ≤ exp

(
− 2ε2

(b− a)2

)
Proof. Let Y = X − EX. Then EY = 0 and Y ∈ [a− EX, b− EX]. Then

P (X ≥ EX + ε) = P (Y ≥ ε) ≤

�

We can also get a relative bound.

Corollary. (Relative Chernoff-Hoeffding) Let µ = EX with X ∈ [a, b] almost surely. Then

P (X ≤ (1− ε)µ) ≤ exp

(
− µε2

2(b− a)2

)
Proof. Let Y = X − µ. Then EY = 0 and by the preceding theorem,

P (X ≤ (1− ε)µ) = P (Y ≤ −εµ) ≤ exp

(
− µ2ε2

(b− a)2

)
�
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Now let’s turn our attention to a different kind of structure. Suppose our random variable
is a sum Sn of random variables Xn

1 . We can bound the expectation of this sum by the
triangle inequality:

E|Sn| ≤
n∑
i=1

E|Xi|.

This and Markov’s inequality give us a weak concentration statement:

P (|Sn| ≥ a) ≤ 1

a

n∑
i=1

E|Xi|.

This bound is sharp without further assumptions. For example, if X is uniform on {−1, 1}
and Xi = X then

P (|Sn| ≥ n) = 1 =
1

n

n∑
i=1

1.

The problem is that when Xi are correlated, they can combine produce large deviations in
the sum. When they are perfectly correlated our sum yields no additional structure at all
and our analysis reduces to the analysis of an arbitrary random variable. If we reduce the
correlation of Xi we would expect their sum to produce a more even outcome, allowing a
sharper analysis. This is the concentration of measure phenomenon.

If Xn
1 are uncorrelated then VarSn =

∑
VarXi and by Chebyshev,

P (|Sn − ESn| ≥ a) ≤ 1

a2
VarSn =

1

a2

n∑
i=1

VarXi.

We can proceed in this way, deriving bounds corresponding to higher order moments E|Sn|k,
and get a sharp bound considering these bounds together. Terry Tao analyzes this approach
in this blog post1. Or we use Chernoff’s method and consider exponential bounds.

If Xn
1 are independent we can proceed much more confidently.

Theorem. (Chernoff-Hoeffding) Let Xn
1 be independent, EXi = 0, and a ≤ X ≤ b. If

Sn =
∑n

i=1Xi then

P (Sn ≥ ε) ≤ exp

(
−2ε2

n(b− a)2

)
.

Proof. By Markov’s inequality and independence,

P (Sn ≥ ε) = P (etSn ≥ etε) ≤ e−tεEetSn = e−tε
n∏
i=1

EetXi .

By Hoeffding’s lemma,

P (Sn ≥ ε) ≤ e−tε
n∏
i=1

exp
(n

8
t2(b− a)2

)
= exp

(
1

8
t2n(b− a)2 − tε

)
.

1https://terrytao.wordpress.com/2010/01/03/254a-notes-1-concentration-of-measure/
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Optimizing over t gives us a Chernoff bound when
n

4
t(b− a)2 − ε = 0.

Solving for t, we find that t = 4ε/n(b− a)2 and

P (Sn ≥ ε) ≤ min
t

exp

(
1

8
t2n(b− a)2 − tε

)
= exp

(
2ε2

n(b− a)2
− 4ε2

n(b− a)2

)
.

�

What can we say if our variables are not independent? We can relax this assumption
and replace it with a martingale condition.

Theorem. (Azuma-Hoeffding) Suppose (Xi) is a bounded martingale difference sequence;
i.e. |Xi| ≤ c. If Sn =

∑n
i=1Xi then

P (Si ≥ ε) ≤ exp

(
−2ε2

nc2

)
.

Proof. By the same reasoning we used to prove Chernoff-Hoeffding,

P (Sn ≥ ε) ≤ e−tεEetSn

But we must take more care at this point in the argument. Consider EetSk for k ∈
{1, . . . , n}. If k > 1 then by the tower property of conditional expectation,

EetSk = EE
(
etSk |Sk−1

)
.

Pulling out the known quantity from the expectation given Sk−1,

E
(
etSk |Sk−1

)
= E

(
etSk−1+tXk |Sk−1

)
= etSk−1E

(
etXk |Sk−1

)
.

Note that E (Xk|Sn−1) = 0 because (Xi) is a martingale difference sequence. Therefore
Hoeffding’s lemma applies and in particular

E
(
etXk |Sk−1

)
≤ et2c2/2.

This is not random, so we can pull it out of the expectation:

EetSk = et
2c2/2EE

(
etSk−1 |Sk−1

)
= et

2c2/2EetSk−1 .

If k = 1 then again by Hoeffding,

EetS1 = EetXk ≤ et2c2/2.
Therefore by induction,

EetSn ≤
n∏
i=1

et
2c2/2 = ent

2c2/2.

Substituting in this bound above, we find that

P (Sn ≥ ε) ≤ exp
(
nt2c2 − tε

)
.

And the proof proceeds as in Chernoff-Hoeffding. �



6 JOHN THICKSTUN

So far we’ve limited our discussion to sums of random variables. We will now turn our
attention to non-linear structures f(X1, . . . , Xn).

Theorem. (McDiarmid) Suppose Xn
1 are independent, f : Rn → R and for all xn1 ∈ Rn,

sup
x∗i

|f(xn1 )− f(x1, . . . , xi−1, x
∗
i , xi+1, . . . , xn)| ≤ c.

Then f(Xn
1 ) converges to its expectation and

P (f(Xn
1 )− Ef(Xn

1 ) ≥ ε) ≤ exp

(
− 2ε2

nc2

)
.

Proof. Consider the Doob martingale (Bi) defined by B0 = Ef(Xn
1 ) and

Bi = E
(
f(Xn

1 )|Xi
1

)
.

Then Mi = Bi −Bi−1 is a martingale difference sequence and
n∑
i=1

Mi = f(Xn
1 )− Ef(Xn

1 ).

Let X ′i ∼ Xi, X
′
i independent of Xi, and define Xn′

1 ≡ (X1, . . . , X
′
i, . . . , Xn). Because

X ′i, X
n
i+1 are independent of Xi

1,

Bi+1 −Bi = E
(
f(Xn

1 )|Xi
1

)
− E

(
f(Xn

1 )|Xi−1
1

)
= E

(
f(Xn

1 )|Xi
1

)
− E

(
f(Xn′

1 )|Xi
1

)
= E

(
f(Xn

1 )− f(Xn′
1 )|Xi

1

)
.

It follows by our hypothesis on f that

|Bi+1 −Bi| =
∣∣∣E(f(Xn

1 )− f(Xn′
1 )|Xi

1

)∣∣∣ ≤ E (| f(Xn
1 )− f(Xn′

1 )
∣∣|Xi

1

)
≤ c.

�


