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1. Negative Probabilities

Recall the definition of the risk neutral probability π in the binomial option pricing
model. Let rn be the single period risk-free rate, u,d be the up and down parameters of
the general binomial model, and n be the number of branches in the binomial tree. In
the particular case of the CRR model, we control u and d with a single hyperparameter σ,
intended to represent volatility, and set u, d = exp(±σ

√
T/n). The risk neutral probability

is then given by

π =
rn − d
u− d

=
rn − e−σ

√
T/n

eσ
√
T/n − e−σ

√
T/n

Note that there is nothing in this equation that enforces π ∈ [0, 1]. In particular,
π ∈ [0, 1] if and only if rn ∈ [d, u]. Note that we do require that the parameters σ, T, n > 0
and therefore d < 1. As long as the interest rate is not negative, we will therefore always
have d < rn. But the bound on u is more interesting. Many otherwise valid combinations
of σ, T, n will produce a value u < rn. In particular suppose T = n = 1, the simple 1-step
binomial tree. Then u = exp(σ) ≈ 1 + σ for sufficiently small σ. For example, if σ = .01
and rn = 1.02 then

π =
rn − exp(−.01)

exp(.01)− exp(−.01)
≈ 1.02− .99

1.01− .99
= 1.5.

Note that if π = 1.5 then 1− π = −.5, hence the labelling of this phenomenon as ”neg-
ative probability.” This result is not so counterintuitive when we consider that the risk
neutral probability π is a probability only in name. By definition, it is the measure under
which the discounted expectation of the binomial outcomes equals the arbitrage enforced
price. There is no a-priori reason to believe that this measure is a probability measure, or
even to believe that it exists or is unique.1

Qualitatively, we will encounter negative probabilities when σ is relatively small and the
risk-free rate is relatively high. Quantitatively, we have the following proposition.

1I think the fundamental theorem of asset pricing states that existence is guaranteed by non-existence
of arbitrage opportunities, and uniqueness by market completeness. But I don’t know enough to say this
with confidence yet.
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Proposition 1.1. The value 1− π is negative exactly when

σ < log(rn)
√
n/T .

Proof. Recall the definition of 1− π:

1− π = 1− rn − d
u− d

=
u− rn
u− d

.

Note by the CRR definitions of u and d that u − d > 0. Therefore 1 − π < 0 iff u < rn.
Appealing again to the CRR definition of u and solving for σ gives us our result. �

We could also ask whether tinkering with the other model parameter, the number of
steps n, helps. It can, but the relationship runs inversely to (the square root of) the
number of steps. I.e. As we grow the size of our binomial tree, we are more likely to
encounter negative probabilities.

Proposition 1.2. Asymptotically, as the number of steps n grows,

log(rn)
√
n/T = O(1/

√
n).

Proof. By definition of the period risk-free rate,

log(rn)
√
n/T = log(erT/n)

√
n/T =

rT

n

√
n/T = O

(
1√
n

)
. �

Note by the same argument that log(rn)
√
n/T = O(

√
T ). So we are more likely to

encounter negative probabilities for short dated options.

2. Numerical Considerations

This problem comes up in practice. I once built an implied volatility solver on top of a
CRR binomial pricer. The generic numerical solver proceeds in two steps. First, it brackets
a root starting from a guess by expanding an interval around the guess until its boundary
points have different sign (there’s also a second entry into the solver that skips this step,
allowing the user to explicitly specify an interval containing the root). Then it uses the
Brent solver on this interval to identify the root.

There are two challenges for this generic solver in resolving CRR implied volatilities.
The first, as we have already anticipated, is that it can fail in the root bracketing step
by testing a left bound on its bracket that is too small, resulting in negative probabilities
in the pricer. I worked around this problem by progressively attempting to bracket with
lower bounds of .5%, 1%, and 2% respectively. But the analysis in section 1 indicates that
the correct lower bound ought to be exactly log(rn)

√
n/T . The solver could still fail to

resolve, but in this case the failure is entirely due to limitations of the CRR model, and
not an artifact of the solver methodology.

The second potential challenge for the numerical solver is that the CRR prices are es-
timates. In particular, they can fail to be monotonic in volatility due to limited accuracy.
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This is a theoretical problem for the pricer, potentially preventing convergence to an im-
plied volatility. In practice, I have not seen this happen. But if it becomes a problem,
we could circumvent it with an analysis similar to the one we made above for negative
probabilities.

Controlling the numerical accuracy of the CRR prices would proceed as follows. Intu-
itively, while CRR prices are not monotonic, they are almost monotonic. Therefore while
the solver might fail to resolve due to CRR error, the mode of failure is that the solver
would bounce endlessly between volatility estimates that are very close to the true implied
volatility, but not quite of the desired accuracy. I expect it is possible to derive an analytic
expression for the CRR error, or at least a tight bound on it. We could then set the desired
accuracy of the solver to this error, which would yield implied volatility estimates at the
maximum level of accuracy possible given the CRR model.
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