
c©Copyright 2021

John Thickstun

Leveraging Generative Models for Music and Signal Processing

John Thickstun

A dissertation
submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

University of Washington

2021

Reading Committee:

Sham M. Kakade, Chair

Zaid Harchaoui, Chair

Sewoong Oh

Noah A. Smith

Program Authorized to Offer Degree:
Computer Science & Engineering

University of Washington

Abstract

Leveraging Generative Models for Music and Signal Processing

John Thickstun

Co-Chairs of the Supervisory Committee:

Associate Professor Sham M. Kakade

Paul G. Allen School of Computer Science & Engineering, Department of Statistics

Associate Professor Zaid Harchaoui

Department of Statistics

Generative models can serve as a powerful primitive for creative interaction with data. Gen-

erative models give us the ability to synthesize or re-synthesize multimedia; conditional

generative modeling empowers us to control the outputs of these models. By steering a

generative model with conditioning information, we can sketch the essential aspects of our

creative vision, and the generative model will fill in the details. This dissertation explores

the possibilities of generative modeling as a creative tool, with a focus on applications to

music and audio.

The dissertation proceeds in three parts:

1. We develop algorithms and evaluation metrics for aligning musical scores to audio.

Alignments provide us with a dense set of labels on musical audio, that we can use

to supervise conditional generation tasks such as transcription: synthesis of a musical

score conditioned on an audio performance. This work on alignments leads to the

construction of MusicNet: a collection of 330 freely-licensed classical music recordings,

together with over 1 million annotated labels indicating the precise time of each note in

every recording, the instrument that plays each note. We use this dataset to train state-

of-the-art music transcription models for the MIREX Multiple Fundamental Frequency

Estimation task.

2. We construct autoregressive generative models of musical scores, which exploit invari-

ances in the structure of music. Whereas most recent work on music modeling has

represented music as an ordered sequence of notes, we explore an alternative represen-

tation of music as a multi-dimensional tensor. We consider a variety of factorizations of

the joint distribution over these tensors. We then turn to our attention to discrimina-

tive modeling of scores, using this tensor representation. We construct a classifier that

can reliably identify the composer of a classical musical score. Our methods, which op-

erate on the generic tensor score representation, outperform previously reported results

using SVM and kNN classifiers with handcrafted features, specialized for the composer

classification task.

3. We develop a sampling algorithm for likelihood-based models that allows us to steer

an unconditional generative model using conditioning information. We work within a

Bayesian posterior sampling framework, using a pre-trained unconditional generative

model as a prior, to sample from the posterior distribution of a conditional likelihood.

Samples are obtained using noise-annealed Langevin dynamics to construct a Markov

chain for approximating samples from this posterior distribution. We develop these

ideas for a variety of models and applications, including source separation, in both the

visual and audio domains.

TABLE OF CONTENTS

Page

List of Figures . iv

List of Tables . x

Chapter 1: Introduction . 1

1.1 Publications and Authorship . 5

Chapter 2: Generative Models of Music . 7

2.1 Basic Definitions . 7

2.2 Generative Modeling . 10

2.3 Autoregressive Sequence Models . 13

2.4 Variational Autoencoders . 14

2.5 Generative Adversarial Networks . 17

2.6 Generative Flow . 19

2.7 Energy-Based Models . 21

Chapter 3: Music Alignment and Transcription . 25

3.1 Audio-to-Score Alignment . 27

3.1.1 A Definition of an Alignment . 28

3.1.2 Alignment Algorithm Evaluation Metrics 31

3.1.3 Related Work on Evaluating Alignments 37

3.1.4 A Dataset of Ground-Truth Alignments 38

3.2 The MusicNet Dataset . 44

3.2.1 Related Music Transcription Datasets 46

3.2.2 Dataset Construction . 48

3.2.3 Quantitative Evaluation of Alignment Algorithms 51

3.2.4 Validating the MusicNet Labels . 57

i

3.2.5 Alignment Parameter Robustness . 59

3.3 Music Transcription . 59

3.3.1 Related Work on Transcription . 61

3.3.2 A Frame-Based Transcription Task 62

3.3.3 Learning from Spectrograms . 63

3.3.4 Learning Features of Music from Scratch 64

3.3.5 Frequency-Invariant Networks . 67

3.3.6 Evaluating Transcription Models . 69

3.4 Conclusion . 72

Chapter 4: Modeling Symbolic Representations of Music 74

4.1 Symbolic Encodings of Music . 75

4.1.1 Sequential Encodings . 76

4.1.2 Tensor Encodings . 79

4.1.3 Hierarchical Encodings . 83

4.1.4 Encodings of Natural Language . 83

4.1.5 Encodings of Images . 84

4.2 Autoregressive Modeling of Musical Scores 84

4.2.1 Related Work on Symbolic Generative Modeling 88

4.2.2 Evaluation Methodology . 89

4.2.3 Factoring the Distribution over Scores 92

4.2.4 Structure-Aware Models of Scores . 99

4.2.5 Revisiting Evaluation of Generative Models 107

4.3 Classification Models for Musical Scores . 111

4.3.1 Related Work . 113

4.3.2 Corpus and Data Representation . 114

4.3.3 A Composer Attribution Task . 117

4.3.4 Model Architectures . 118

4.3.5 Results and Conclusions . 125

4.4 Conclusion . 127

Chapter 5: Conditional Sampling from Generative Models 129

5.1 Conditional Sampling via Langevin Dynamics 131

ii

5.1.1 Related Work on Sampling . 134

5.1.2 Smoothing a Joint Distribution . 136

5.1.3 Discretized Autoregressive Smoothing 138

5.1.4 Stochastic Gradient Langevin Sampling 141

5.1.5 Setting the Step Size . 143

5.2 Linear Inverse Problems and Source Separation 146

5.2.1 Related Work on Source Separation 148

5.2.2 Evaluation Methodology . 151

5.2.3 The Importance of Stochasticity . 154

5.3 Empirical Sampling Results . 155

5.3.1 Datasets . 155

5.3.2 Generative Priors . 156

5.3.3 Quality of Generated Samples . 159

5.3.4 Speed and Parallelism . 160

5.3.5 Source Separation . 162

5.3.6 Image Colorization . 170

5.3.7 Super-Resolution . 171

5.3.8 Inpainting . 172

5.4 Conclusion . 172

Chapter 6: Conclusion and Perspectives . 174

Bibliography . 177

Appendix A: Extended Langevin Sampling Results 220

A.1 Intermediate Results During Noise-Annealed Langevin Sampling 221

A.2 Additional PixelCNN++ Sampling Results 222

A.3 Extended Glow LSUN Separation Results 225

A.4 Extended NCSN CIFAR-10 Separation Results 226

A.5 Extended Glow CIFAR-10 Separation Results 227

A.6 Extended NCSN CIFAR-10 Colorization Results 228

A.7 Extended Glow CIFAR-10 Colorization Results 229

iii

LIST OF FIGURES

Figure Number Page

2.1 A piano-roll representation of symbolic music. 8

2.2 A digital audio recording of a musical performance. 9

3.1 Two symbolic performance piano-rolls. Top: a score is aligned to an audio
performance to create a performance-aligned score. Bottom: the same audio
performance is been transcribed to create a performance transcript. Asyn-
chronies and errors in the pianist’s performance prevent a perfect alignment
(red dashes). 29

3.2 An alignment function τ , that maps time in a score (measured in beats) to
time in a performance (measured in seconds). A piano-roll score is mapped
by the alignment to a performance-aligned score pscoreτ . Time pauses in the
score as the performer extends the triad, resulting in a jump discontinuity in
the alignment. Because the alignment τ is not invertible, the set τ−1(t) may
contain 0, 1, or many elements. 30

3.3 A possible ground-truth alignment (solid) compared to two candidate align-
ments (dashed), shown before (top) and after (bottom) linearization. The
first candidate alignment (left) is perfect; its canonical linear representative
exactly matches that of the ground-truth. The second candidate alignment
(right) maps score changepoints erroneously; its error is given by the shaded
region. 34

3.4 To understand the behavior of the ground-truth alignments, we can visually
compare the piano-roll performance (top) captured by the Yamaha Disklavier
to the performance-aligned score created by warping the score according to the
ground-truth alignment (middle). In the comparison plot (bottom) we use red
to identify notes that are indicated by the performance-aligned score but not
performed and yellow to identify notes that are performed but not indicated
by the performance-aligned score. This example visualizes the beginning of a
performance of the Bach’s Prelude and Fugue in G-sharp minor (BWV 863). 39

iv

3.5 An example of the MusicNet labels. Top: an audio recording of Beethoven’s
String Quartet No. 11 in F minor (Opus 95, ‘Serioso’). Bottom: a piano-
roll aligned to the audio recording above, i.e., a performance-aligned score
(Definition 3.2). The highlighted notes in the piano-roll indicate the active
notes at the time indicated by the red tick-mark on the audio wave. 47

3.6 (Left) Heatmap visualization of local alignment costs between the synthesized
and recorded spectrograms, with the optimal alignment path in red. The block
from x = 0 to x = 100 frames corresponds to silence at the beginning of the
recorded performance. The slope of the alignment can be interpreted as an in-
stantaneous tempo ratio between the recorded and synthesized performances.
The curvature in the alignment between x = 100 and x = 175 corresponds to
an extension of the first notes by the performer. (Right) Annotation of note
onsets on the spectrogram of the recorded performance, determined by the
alignment shown on the left. 49

3.7 Comparing the results of various candidate alignment algorithms to the ground-
truth alignment. In each case, red is used to identify notes that are indicated
by the candidate alignment algorithm, but not by the ground-truth alignment,
and yellow is used to identify notes that are indicated by the ground-truth
alignment, but not by the candidate alignment. This example visualizes the
beginning of a performance of the Bach’s Prelude and Fugue in G-sharp minor
(BWV 863). 54

3.8 A visual illustration of correlation between the new temporal metrics TimeError
and TimeDev introduced in Section 3.1.2 with the old note-based metrics
NoteError and NoteDev. Each point is one of the 193 performances in the
dataset described in Section 3.1.4. For spectrogram results, 13 outliers with
TimeError > 300ms are omitted. 55

3.9 (Left) Features learned by a 2-layer ReLU network trained on small mono-
phonic subset of MusicNet. (Right) Features learned by the same network,
trained on the full MusicNet dataset. 65

3.10 (Left) The frequency distribution of notes in MusicNet. (Right) The frequency
distribution of learned nodes in a 500-node, two-layer ReLU network. 66

v

3.11 A frequency-invariant network for note classification: this is the TKH1 archi-
tecture evaluated in Tables 3.6, 3.7, and 3.8 . Audio input maps to Layer
1 according to the log-spaced, cosine-windowed filterbank. Layer 1 maps to
Layer 2 by convolving a set of 128× 1 learned filters along the log-frequency
axis at each fixed time location. Layer 2 maps to Layer 3 by convolving again
along the log-frequency axis, this time with a set of filters of height 1 that
fully connect along the time and channel axes of Layer 2. Notes are predicted
at Layer 4 by linear classification on the learned representation H given at
Layer 3. Using a pre-defined filterbank at Layer 1 is essential; compare the
“frequency invariant” network (filterbank) to “channel convolution” network
(learned weights in Layer 1) in Table 3.6. Sensitivity of transcription results to
the choice of filterbank is presented in Table 3.6, and this question is studied
further by Cheuk et al. [2020a]. 68

4.1 Mozart’s piano sonata number 8 in A minor, movement 1, from measure 1. . 75

4.2 A text re-encoding of the binary MIDI encoding of the top line of the score
displayed in Figure 4.1. For brevity, a portion of the second track has been
elided (...). 78

4.3 Humdrum encoding of the score displayed in Figure 4.1. Each successive row
indicates a new musical event in the time series (first axis of the tensor). Parts
(staves) are organized in tab-separated columns (second axis of the tensor).
Each tab-delineated item in a row consists of one or more space-delineated
tokens (third axis of the tensor). For example, the notation 8A\ 8c\ 8e\L
in Line 5, Column 1 indicates an A minor triad of eighth-notes (the addition
slashes and L indicate visual formatting instructions that we do not model in
this work). 79

4.4 Two scores with the same piano-roll representation as the score fragment in
Figure 4.1. The popular dataset introduced by Boulanger-Lewandowski et al.
[2012] uses this single-bit representation. A second bit is introduced in some
more recent work: Liang et al. [2017] refers to these as “Tie bits”) 80

4.5 A corruption of the score shown in Figure 4.1, discretized at eighth-note res-
olution. Fine-grained rhythmic information, and the pitch of the final note in
the treble part, are lost. Boulanger-Lewandowski et al. [2012] discretizes data
at quarter-note resolution. 81

4.6 MusicXml encoding of the score displayed in Figure 4.1. For brevity, a portion
of the MusicXml document has been elided (...). 82

vi

4.7 The Mozart from Figure C.1, with red lines that indicate the boundaries of
events under a run-length factorization of the score. Notes in the treble staff
are chopped up into eight-note runs, so instead of predicting note durations
(quarter, dotted-eighth, sixteenth, etc.) we instead predict fragments of notes
(eighth, continue eighth, continue eighth, etc.). 95

4.8 Beethoven’s piano sonata number 8 (Pathetique) movement 2, from measure
9, rendered by the Verovio Humdrum Viewer. Although visually rendered on
two staves, this sonata consists of four parts: a high sequence of quarter and
eighth notes, two middle sequences of sixteenth notes, and a low sequence of
quarter notes. 97

4.9 Left: an absolute pitch predictor uses a distinct model for each pitch-class.
Right: a relative pitch predictor learns a single model and computes a predic-
tion for each pitch class based on a translated view of the conditional history.
For example, an absolute model predicts the presence or absence of pitch-
classes C#5, C5, B4, etc. in the current event rk (Definition 4.6) given the
presence of A4 in the previous event rk−1. In contrast, a relative model pre-
dicts the presence or absence of C#5 given rk−1 contained a note 4 steps
below, C5 given rk−1 contained a note 3 steps below, B4 given rk−1 contained
a note 2 steps below, etc. 104

4.10 Coupled state estimation of Mozart’s string quartet number 2 in D Major,
K155, movement 1, from measure 1, rendered by the Verovio Humdrum
Viewer. A recurrent network models the state hk,v of each voice v at step
k, based on the previous state hk−1,v and the current content of the voice.
Another recurrent network models of the global state gk of the score at step k
based on the previous global state gk−1 and a sum of the current states of each
voice. Subsequent notes (purple) in each voice are predicted using features of
the global state and the state of the relevant voice. See Equations 4.14 for a
formal description of this model. 105

5.1 A visual summary of discretized autoregressive smoothing. Given a noisy his-
tory x̃<i = x<i + ε<i (left column) where ε ∼ N (0, σ2I), we train a model
to predict the un-noised distribution over xi ∈ R (middle column). This dis-
tribution is discrete and non-differentiable in x̃; we convolve with a Gaussian
ϕσ(t) = N (t; 0, σ2) to produce a continuous estimate of x̃i (right column).
We can run Langevin dynamics on the continuous distribution, and gradually
anneal the smoothing to approximate the target distribution. 139

vii

5.2 The behavior of σ×‖∇x log pσ(x)‖ in expectation for the NCSN (orange) and
Glow (blue) models trained on CIFAR-10 at each of 10 noise levels as σ decays
geometrically from 1.0 to 0.01. For large σ, ‖∇x log pσ(x)‖ ≈ 50/σ. This
proportional relationship breaks down for smaller σ. Because the expected
gradient of the noiseless density log p(x) is finite, its product with σ must
asymptotically approach zero as σ → 0. 145

5.3 A curated collection of examples demonstrating color and structural ambigu-
ities in CIFAR-10 mixtures. In each case, the original components differ sub-
stantially from the components separated by BASIS using NCSN as a prior.
But in each case, the separation results also look like plausible CIFAR-10 images.152

5.4 Repeated sampling using BASIS with NCSN as a prior for several mixtures of
CIFAR-10 images. While most separations look reasonable, variation in color
and lighting makes comparative metrics like PSNR unreliable. This challenges
the notion that the ground truth components are identifiable. 153

5.5 Non-stochastic gradient ascent produces sub-par results. Annealing over smoothed-
out distributions (Noise Conditioning) guides the optimization towards likely
regions of pixel space, but gets stuck at sub-optimal solutions. Adding Gaus-
sian noise to the gradients (Langevin dynamics) shakes the optimization tra-
jectory out of bad local optima. 154

5.6 Langevin sampling applied to visual source separation (Section 5.3.5) super-
resolution (Section 5.3.7) and inpainting (Section 5.3.8) using a PixelCNN++
prior trained on CIFAR-10 images. Ground-truth images are taken from the
CIFAR-10 test set. 156

5.7 As the number of Langevin iterations T increases, the log-likelihood of se-
quences generated by stochastic Langevin sampling approaches the log-likelihood
of test set sequences. Left: sampling from a PixelCNN++ model trained on
CIFAR-10. Right: sampling from WaveNet models trained on the Supra Piano
and VCTK speech datasets. 159

5.8 Stochastic Langevin sampling can be parallelized across multiple devices, re-
sulting in faster inference time than ancestral sampling. Beyond a threshold
level of computation, Langevin sampling time is inversely proportional to the
number of devices. 161

5.9 Separation results for mixtures of four images from the MNIST dataset (Left)
and two images from the CIFAR-10 dataset (Right), using annealed Langevin
sampling with the NCSN Song and Ermon [2019] generative model as a prior
over images. We draw attention to the central panel of the MNIST results
(highlighted in orange), which shows how sometimes a mixture can be plausi-
bly separated in multiple ways. 163

viii

5.10 64× 64 class-conditional LSUN separation results using Glow as a prior. One
mixture component is sampled from the LSUN churches category, and the
other component is sampled from LSUN bedrooms. 164

5.11 The empirical distribution of PSNR for 5,000 class agnostic MNIST digit
separations using BASIS with the NCSN prior (see Table 5.2 for comparison
of the central tendencies of this and other separation methods). 166

5.12 Uncurated class-agnostic separation results using: (1) samples from the pos-
terior with Glow as a prior (2) an approximate MAP estimate using the max-
imum over 10 samples from the posterior with Glow as a prior (3) samples
from the posterior with NCSN as a prior. 167

5.13 Colorizing CIFAR-10 images. Left: original CIFAR-10 images. Middle: greyscale
conversions of the images on the left. Right: imputed colors for the greyscale
images, found by BASIS using NCSN as a prior. 170

A.1 Intermediate CIFAR-10 separation results taken at noise levels σ during the
annealing process of Langevin separation with an NCSN prior. 221

A.2 Additional uncurated results of Langevin source separation (Section 5.3.5) for
mixtures of CIFAR-10 test-set images using a PixelCNN++ prior trained on
CIFAR-10. 222

A.3 Additional uncurated results of Langevin super-resolution (Section 5.3.7) ap-
plied to down-sampled CIFAR-10 test-set images using a PixelCNN++ prior
trained on CIFAR-10. 223

A.4 Additional uncurated results of Langevin inpainting (Section 5.3.8) applied
to masked CIFAR-10 test-set images using a PixelCNN++ prior trained on
CIFAR-10. 224

A.5 Uncurated church/bedroom LSUN separation results using Glow as a prior. . 225

A.6 Uncurated class-agnostic CIFAR-10 separation results using NCSN as a prior. 226

A.7 Uncurated class-agnostic CIFAR-10 separation results using Glow as a prior. 227

A.8 Uncurated CIFAR-10 colorization results using NCSN as a prior. 228

A.9 Uncurated CIFAR-10 colorization results using Glow as a prior. 229

ix

LIST OF TABLES

Table Number Page

3.1 Summary statistics of the MusicNet dataset. See Section 3.2.2 for a description
of the construction of MusicNet and the alignment algorithm used in the
labelling process. Section 3.2.4 describes the methodology used to compute
the error rate of the labelling process. The statistics reported in this table
differ slightly from those reported in the original publication of MusicNet
[Thickstun et al., 2017] due to a tabulation error in the earlier work. 45

3.2 The average value of each metric across all performances in the dataset. Values
are reported in milliseconds of performance time (lower is better). Spectro-
gram results exclude 13 outliers with TimeError > 300ms. Truncated spec-
trogram results exclude 2 outliers with TimeError > 300ms. 52

3.3 Correlation coefficients between temporal alignment metrics and the analogous
note-based alignment metrics. There is substantial agreement between these
two sets of metrics about whether a performance is well-aligned. 53

3.4 The average value of each metric across 151 Bach Prelude and Fugue per-
formances in the ASAP dataset of ground truth alignments [Foscarin et al.,
2020]. Values are reported in milliseconds of performance time (lower is bet-
ter). Chroma and Constant-Q results exclude 6 outliers with TimeError >
300ms, and Spectrogram results exclude 15 outliers with TimeError > 300ms. 56

3.5 Correlation coefficients between temporal alignment metrics and the analo-
gous note-based alignment metrics using the ASAP dataset of ground truth
alignments [Foscarin et al., 2020]. 56

3.6 Average Precision, Accuracy, and Error for each of the models discussed in
this section, evaluated using the test set proposed by Thickstun et al. [2017].
Average Precision is computed by scikit-learn [Pedregosa et al., 2011]; Accu-
racy and Error are computed using mir eval [Raffel et al., 2014]. The Accuracy
and Error scores are assume a global prediction threshold of 0.4. 70

3.7 MIREX 2017 results for the top 5 participants by accuracy in each category
of the Multiple Fundamental Frequency Estimation challenge. THK1 is the
wide layer 3 frequency-invariant model described in this document. 71

x

3.8 Full MIREX Su dataset results for the Multiple Fundamental Frequency Es-
timation challenge since the introduction of the Su dataset in 2015. THK1 is
the wide layer 3 frequency-invariant model described in this document. There
were no participants in this challenge in 2020. 73

4.1 Notes in the KernScores dataset, partitioned by composer. The “Early” col-
lection consists of Renaissance vocal music; a plurality of the Early music is
composed by Josquin. 90

4.2 Notes in the KernScores dataset, partitioned by ensemble type. 91

4.3 Single-voice (homophonic) results. Loss is the cross-entropy described in Sec-
tion 4.2.2. Losst and Lossp are the decompositions this loss for the distribu-
tions of rk,0 and rk,1 in Equation (4.12). For succinctness, define r(m) ≡ rk−m:k

(a truncated history of length k) and r+ ≡ rk,0 ⊕ rk,1,1:p (the current frame,
masked above pitch p). linp indicates a log-linear classifier (softmax for r̂k,0
and sigmoid for r̂k,1,p); lin indicates the relative pitch log-linear classifier;
inputs 1p indicate pitch-class features. The inputs ` indicate location fea-
tures. fc indicates a fully connected layer. c indicates learned pitch embed-
dings and f indicates fixed (octave) embeddings. convk indicates 1d convo-
lution of width k. convk1,k2 indicates two layers of convolutions (convk1,k2 =
convk2 ◦ convk1). rnn indicates a recurrent layer. All hidden layers are
parameterized with 300 nodes. Models were regularized with early stopping. 103

4.4 Multi-voice (polyphonic) results. Loss is the cross-entropy described in Sec-
tion 4.2.2. Losst and Lossp are decompose this loss into contributions from
the models of q(sk,0|s1:k) and q(sk,1,p|s1:k, sk,0, sk,1,1:p) respectively (using the
factorization described by Equation (4.13)). The hierarchical architecture is
defined by Equations (4.14). The distributed architecture is defined by Equa-
tion (4.15). Voice and global history refer to the number of time steps used to
construct the states hk,v and gk respectively. Experiment 8 is a baseline where
the voice models are completely decoupled (equivalent to single-voice Experi-
ment 22 in Table 4.3; the average number of voices per score is 4.12). Results
are reported on non-piano test set data (see the discussion of Homophonic
Run-Length Serializations in Section 4.2.3). 107

xi

4.5 Qualitative evaluation of a hierarchical model conditioned on 10 steps of his-
tory: Experiment 6 in Table 4.4. Twenty participants were asked to judge
50 audio clips of varying length (where length indicates a number of time
indices in the score tensor e; see Definition 4.5). The scores indicate partic-
ipants’ average correct discriminations out of 10 (5.0 would indicate random
guessing; 10.0 would indicate perfect discrimination). The categories indicate
breakdowns for listeners who identified as educated in music or educated in
machine learning. 110

4.6 Details of the KernScores collection used for training and evaluation in this
paper. 116

4.7 Comparison of model accuracies at various samples sizes: accuracy increases
uniformly with sample size. See the referenced equations for formal model
definitions. 119

4.8 Results of the 19-way classification problem on the full corpus for each model
considered in this work. Reported results are percent accuracy, as defined
by Equation (4.19), calculated using the 10-fold cross-validation procedure
described in Section 4.3.3. 125

4.9 (Top) Confusion matrix for the hybrid model defined by Equation (4.28),
trained and evaluated on a 6-composer subset of the corpus; rows indicate
the true composer and columns indicate the model’s prediction. Compare to
the results in Tables 3 and 4 (page 6) of Brinkman et al. [2016]. (Bottom)
Accuracy (Equation (4.19)) of our hybrid model comparisoned to the KNN
and SVM models from Brinkman et al. [2016]. 126

4.10 (Top) Confusion matrix for the hybrid model (4.28), trained and evaluated
on a 3-composer subset of the corpus; rows indicate the true composer and
columns indicate the model’s prediction. Compare to the results in Table 9
(page 18) of Herremans et al. [2016]. (Bottom) Accuracy (Equation (4.19))
comparisons of our hybrid model to the SVM model from Herremans et al.
[2016]. 127

5.1 The mean log-likelihood under the minimal-noise Glow prior pσL(x) for the
test set xtest, and for samples of 100 Langevin separations xLangevin. The log-
likelihood of each test set under the noiseless prior p(xtest) is reported for
reference. 160

5.2 PSNR results for separating 6,000 pairs of equally mixed MNIST images. For
class split results, one image comes from label 0−4 and the other comes from
5 − 9. We compare to S-D Kong et al. [2019], NES Halperin et al. [2019],
convolutional NMF (class split) Halperin et al. [2019] and standard NMF
(class agnostic) Kong et al. [2019]. 166

xii

5.3 Quantitative results for visual sources separation on CIFAR-10. Results are
measured using Inception Score / FID Score of 25,000 separations (50,000
separated images) of two overlapping CIFAR-10 images. In Class Split one
image comes from the category of animals and other from the category of ma-
chines. The NES baseline results are computed using the procedure described
by Halperin et al. [2019]. 168

5.4 Quantitative results for audio source separation of mixtures of Supra piano
and VCTK voice samples. Results are measured using SI-SDR (higher is
better). 169

5.5 Inception Score / FID Score of 50,000 colorized CIFAR-10 images. As mea-
sured by IS/FID, the quality of NCSN colorizations nearly matches CIFAR-10
itself. 171

5.6 Quantitative results for audio super-resolution at three different scales on the Supra

piano and VCTK voice datasets. Results are measured using PSNR (higher is

better). KEE refers to the method described by Kuleshov et al. [2017] 172

xiii

ACKNOWLEDGMENTS

I thank my academic advisors, Sham M. Kakade and Zaid Harchaoui, who have influ-

enced every aspect of my growth and development as a researcher. Thank you both for

your mentorship, your patience, and your belief in me. I thank the other members of my

committee: Sewoong Oh, Noah Smith, and Lalit Jain. You have been so generous with your

time, your feedback on this document and your career advice. At the emotional low-point of

my PhD, I spent a summer at Amazon Music working with Ted Sandler and Ben London,

that revitalized my enthusiasm for research. Thank you for accepting me as an intern and

for your mentorship that summer. And I thank our graduate school advisor Elise Dorough,

who has helped me—and so many students—to navigate the experience and the institution

of graduate school.

I thank my labmates for their friendship and support. Rahul Kidambi and Corinne Jones,

who I have known since my first year of graduate school. And later, as Sham’s and Zaid’s labs

grew: Krishna Pillutla, Alec Greaves-Tunnell, Aravind Rajeswaran, Ramya Vinayak, Weihao

Kong, Vincent Roulet, Lang Liu, and Aditya Kusupati. Our graduate school environment is

so strongly influenced by our advisors that often labmates are the only people who can fully

understand and share our mutual experiences. I want to single out Krishna in particular,

with whom I share both my advisors, and who has been a constant and unwavering source

of support and encouragement.

I was fortunate to share office 418 with wonderful friends during my first several years

of graduate school: Colin Lockard, Robbie Weber, Chris Xie, and Xin Yang. We’ve all

graduated now, 6 years after that office group first formed, and I think the camaraderie

of the office has contributed a lot to our successes. Later on, I shared a work space with

xiv

many more friends in the ML lab: Jennifer Brennan, Ian Covert, Sam Ainsworth, Andrew

Wagenmaker, Rahul Nadkarni, Romain Camilleri, among others. It is a privilege to be able

to work alongside such a sociable, intellectually stimulating, and thoughtful group of people.

I thank my undergraduate advisors: Eugene Charniak, Björn Sandstede, and Basilis Gi-

das. Eugene, for the generous time he spent mentoring me as an undergraduate researcher

and fostering my interest in the intersection of music and machine learning. Björn, for en-

couraging my mathematical development and broad interests in mathematics and computing.

And I thank each of them for encouraging me to pursue a PhD, when I was very uncertain

about the decision: I recall Basilis in particular scolding me for even considering abandoning

my work on music. I am so glad they pushed my to apply to graduate schools.

I thank all my co-authors (in chronological order): Sham M. Kakade, Zaid Harchaoui,

Dean P. Foster, Harsh Verma, Vivek Jayaram, Bhargavi Paranjape, Mandar Joshi, Han-

naneh Hajishirzi, Luke Zettlemoyer, Jennifer Brennan, Samuel Ainsworth, Kendall Lowrey,

Siddhartha Srinivasa, Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers, Yejin Choi,

Tyler Benster, Darwin Babino, Matthew Hunt, Xiyang Liu, Sewoong Oh, and Russell N.

Van Gelder. I have learned so much from working with you.

I thank my fiancée, Leah Perlmutter, who has been an unending source of emotional

support and understanding throughout the all-consuming experience that is graduate school.

I thank my parents, who have always supported me and given me the confidence to take risks

as I work to build a life and career for myself. And finally I thank my childhood cello teacher,

Suzanne Beevers. Beyond concrete lessons on musicianship, Sue taught me how to practice,

to be simultaneously self-critical and self-assured of my work, to work toward a goal on the

far horizon. Sue’s lessons have deeply influenced this dissertation, from my choice of topic

to the skills I relied on daily to do the work.

xv

DEDICATION

To my cello teacher, Suzanne Beevers.

xvi

1

Chapter 1

INTRODUCTION

This dissertation explores probabilistic generative modeling as a paradigm for analysis

and synthesis of music. This work is motivated by the potential of these models as tools

for artists and creators. As generative modeling techniques mature, we are beginning to see

applications of these models to facilitate the creative process in various mediums: visual

editing [Xiong et al., 2019], creative writing [Clark et al., 2018] and music composition

[Donahue et al., 2019b]. The foci of this dissertation are the music and audio domains. We

consider applications of generative models to music and signal processing problems, and how

to adapt generative modeling techniques to the specific structures of musical media. We

focus in particular on classical western music. This choice of genre is in part pragmatic:

classical music is relatively unencumbered by licensing restrictions, which facilitates open

research in this genre.

Classical music is expressed through an unusually tightly-coupled constellation of modal-

ities: the visual medium of musical scores, acoustic musical performances of these scores,

and symbolic digital representations of music that can represent alternately (i) a digitization

of a visual score (ii) a transcription of a musical performance with expressive timings or

(iii) some artifact occupying a gray area between a performance and score. In addition to

the generative modeling questions intrinsic to each modality, these modes present us with

sequence-to-sequence modeling questions analogous to translation. This coupling of visual,

symbolic, and acoustic media make classical music a potential Rosetta-stone for generative

modeling of music.

A generative model is a tool that we can use to synthesize musical structures. Before

we immerse ourselves in the technical details of generative modeling, we should acknowledge

2

that music is art, which is inherently tied to the human experience. Algorithms and models

cannot generate art, which is inextricably connected to questions of provenance, interpre-

tation, and meaning. An algorithmic creation lacks the context and purpose of an artistic

creation. Nevertheless, generative models can serve as a tool to assist the artistic process.

We use generative models as a tool for analysis in Chapter 3, constructing models that gen-

erate a symbolic description of the content of a musical audio recording. We use generative

models as an unconstrained tool for synthesizing symbolic structures with musical form in

Chapter 4. We demonstrate how unconstrained generative models can be steered towards

desired outputs in Chapter 5. This ability to steer a generative model provides control and

agency to the artist: we can imagine a generative model as a creative collaborator, with

impeccable knowledge of its craft, that will diligently defer to our artistic vision.

In Chapter 2 we describe two fundamental digital encodings of music that we are in-

terested in modeling: symbolic piano-rolls, and discretized audio waves. The remainder of

this chapter is dedicated to a review of generative modeling, and applications of these tech-

niques to the music domain. We focus in particular on likelihood-based generative models

that explicitly parameterize a probability density over musical structures. Our interest in

likelihood-based models is motivated by the methods developed in Chapter 5, which rely on

(gradients of) a log-likelihood function to steer the conditional generation process.

In Chapter 3 we investigate music transcription: the translation an audio recording into

a corresponding musical score. This translation is insightful because it provides us with a

symbolic, dense semantic labeling of an audio recording. The utility of these labels has earned

music transcription recognition as a “key enabling technology” for music signal processing

[Benetos et al., 2013, 2019]; the combined importance and difficulty of this problem have

earned it a reputation as a “holy grail” of the music signal processing field [Benetos et al.,

2012, Kim, 2020]. We can frame music transcription as a conditional generative modeling

task: generate a likely score (or the most likely score) associated with a given audio recording.

We will discuss a prevalent frame-based simplification of the music transcription task, which

motivates an analysis of alignment algorithms that we can use to construct labels for frame-

3

based transcription.

The work presented in Chapter 3 contributes to both the audio-to-score alignment lit-

erature and to the music transcription literature. We introduce a formal definition of a

temporal audio-to-score alignment, and contrast this definition with the related concept of

a note-based alignment. We introduce evaluation metrics for analyzing the performance of a

temporal alignment algorithm, construct a dataset of ground truth alignments upon which

these metrics can be computed, and evaluate several popular temporal alignment algorithms.

We go on to use an alignment algorithm to construct the MusicNet dataset, a collection of

freely-licensed chamber music recordings aligned to corresponding musical scores. We use

MusicNet to train supervised transcription models that achieve state-of-the-art frame-based

transcription results for the popular Su benchmark dataset [Su and Yang, 2015b]. Finally, we

analyze the learned low-level features of end-to-end transcription models and draw analogies

between these features and classical filterbank representations of audio.

In Chapter 4 we investigate symbolic generative and discriminative models of musical

scores. This necessitates a more nuanced discussion of symbolic representations of music,

beyond the simple piano-rolls considered in Chapters 2 and 3. We develop (unsupervised)

generative models of musical scores, and (supervised) discriminative classification models

for attributing composers to musical scores. The generative modeling problem for musical

scores is “almost as old as that of computers” [Herremans et al., 2017], and is intertwined

with questions of computational creativity and machine intelligence [Conklin, 2003]. The

discriminative composer attribution problem is arguably less well-motivated: most scores are

distributed with composer metadata. Where this metadata is absent, composer attribution

is a musicological question and the value of a black-box classifier’s prediction is debatable.

Instead, our interest in these discriminative models is motivated by their potential use as

likelihoods for steering generative models using the techniques developed in Chapter 5.

The work presented in Chapter 4 makes contributions to the modeling and evaluation

of symbolic music scores. We define several autoregressive factorizations of a musical score,

drawing connections between these factorizations, traditional piano-roll factorizations, and

4

more recently proposed sequential factorizations. We define a cross-entropy metric for gen-

erative models of musical scores, which is independent of any choice of factorization. We

construct neural architectures tailored to the structure of a musical scores, and evaluate a

variety architectural choices for generative modeling of scores under this cross-entropy met-

ric. Finally, we develop state-of-the-art discriminative composer classification models trained

on a corpus of just 2,500 scores, demonstrating the effectiveness of these end-to-end neural

models in this small-data regime.

In Chapter 5 we investigate conditional sampling, using a likelihood function (such as a

classifier) to steer the outputs of a generative model towards samples with specified criteria

or constraints. We develop algorithms for sampling from the posterior distribution of our

model (in the Bayesian sense) for a given likelihood. We are particularly interested in source

separation, also known as the cocktail party problem [Cherry, 1953, Haykin and Chen, 2005],

which involves decomposing an audio recording into an additive mixture of sources. Like

transcription, we can frame source separation as a conditional generative modeling problem:

generate a collection of audio recordings, subject to the constraint that these recordings

sum to a given mixture. Music transcription and source separation have been juxtaposed as

complementary foundational questions in music signal processing [Plumbley et al., 2002].

The work presented in Chapter 5 makes methodological contributions at the intersection

of Markov-chain Monte Carlo methods and deep learning, as well as empirical contributions

to the source separation literature. Methodologically, we introduce a procedure for smooth-

ing discretized autoregressive models for use in conjunction with Markov-chain Monte Carlo

techniques based on Langevin dynamics. Empirically, we extend the annealed Langevin sam-

pling procedure introduced by Song and Ermon [2019] to posterior sampling problems, and

in particular to the class of linear inverse problems which includes source separation. This

unsupervised approach to source separation expands upon the Bayesian source separation lit-

erature [Benaroya et al., 2006], using deep generative models as Bayesian priors over sources.

Our unsupervised method achieves state-of-the-art results for visual source separation, and

competitive results for audio source separation compared to supervised approaches.

5

1.1 Publications and Authorship

The work in this dissertation is the result of several research collaborations; prior publications

of work contained in this thesis are discussed below, organized by the chapter in which this

work appears. All of the writing in this dissertation that is borrowed from these publications

is my own.

Chapter 3. I am the primary author of all work presented in this chapter.

• Learning Features of Music from Scratch. John Thickstun, Zaid Harchaoui, and

Sham M. Kakade. Published in International Conference on Learning Representations

(ICLR) 2017.

• Frequency Domain Convolutions for Multiple F0 Estimation. John Thickstun, Zaid

Harchaoui, Dean P. Foster, and Sham M. Kakade. Technical Report (MIREX) 2017.

• Invariances and Data Augmentation for Supervised Music Transcription. John Thick-

stun, Zaid Harchaoui, Dean P. Foster, and Sham M. Kakade. Published in International

Conference on Acoustics, Speech, and Signal Processing (ICASSP) 2018.

• Rethinking Evaluation Methodology for Audio-to-Score Alignment. John Thickstun,

Jennifer Brennan, and Harsh Verma. Preprint Report (ArXiv) 2020.

Chapter 4. I am the primary author of the work on coupled recurrent models. I had a

supervisory role in the work on composer classification, in collaboration with Harsh Verma,

who was an undergraduate student at that time at the University of Washington. The

experimental work on composer classification was conducted by Harsh.

• Coupled Recurrent Models for Polyphonic Music Composition. John Thickstun, Zaid

Harchaoui, Dean P. Foster, and Sham M. Kakade. Published in International Sympo-

sium on Music Information Retrieval (ISMIR) 2019.

6

• Convolutional Composer Classification. Harsh Verma and John Thickstun. Published

in International Symposium on Music Information Retrieval (ISMIR) 2019.

Chapter 5. The work presented in this chapter is the result of a close collaboration with

Vivek Jayaram. We are equal co-authors of both of these papers, with shared responsibility

for the problem formulation, methodological contributions, and experimental work.

• Source Separation with Deep Generative Priors. Vivek Jayaram and John Thickstun.

Published in International Conference on Machine Learning (ICML) 2020.

• Parallel and Flexible Sampling from Autoregressive Models via Langevin Dynamics.

Vivek Jayaram and John Thickstun. Published in International Conference on Machine

Learning (ICML) 2021.

7

Chapter 2

GENERATIVE MODELS OF MUSIC

This chapter provides background on generative modeling techniques. It is not intended

as a complete survey of generative modeling, but rather as an introduction to the models

used throughout this dissertation and—more broadly—applications of generative modeling

techniques in music research. We begin in Section 2.1 by formalizing definitions of two of

the basic objects of interest in the music domain. In Section 2.2 we introduce the premise of

generative modeling and discuss some of the challenges in constructing and evaluating these

models. In Section 2.3 we review autoregressive models, a ubiquitous approach to modeling

sequential data that we use extensively in Chapters 4 and 5. In Section 2.4 we review vari-

ational auto-encoders, and in Section 2.5 we review generative adversarial networks. Unlike

the rest of the models described in this chapter, variational autoencoders and generative ad-

versarial networks are not put to use later in this dissertation, and we discuss the obstruction

to combining these models with the sampling techniques developed in Chapter 5. In Section

2.6 we review flow-based networks, which feature prominently in Chapter 5. And finally, in

Section 2.7 we review energy based models; the sampling techniques used by these models

directly inform the algorithms introduced in Chapter 5.

2.1 Basic Definitions

One standard and generic way to represent symbolic music is a piano-roll, which we formally

define in Definition 2.1. A piano-roll is a binary matrix that encodes the presence or absence

of a musical event (e.g., a pitch class) at a given time index. For example, we can encode

solo piano music using a vocabulary of N = 88 pitch classes, corresponding to the keys on a

standard piano; the full Western semi-tone scale can be represented using N = 128, which

8

is the convention adopted by MIDI standard [International MIDI Association, 1983].

Definition 2.1. A piano-roll of length T is a discrete-valued function pianoroll : [0, T)→
{0, 1}N .

If we discretize time T into sub-divisions of length dt, then the matrix M ∈ {0, 1}N×(T/dt)

defined by Mn,k = pianoroll(kdt)n is the standard, discrete-time version of a piano-roll.

Piano Roll

Pi
tc

he
s

Time (beats)

Figure 2.1: A piano-roll representation of symbolic music.

We can encode a musical score as a piano-roll, denoted by score : [0, S) → {0, 1}N ,

defined by the rule score(s)n = 1 iff note n is indicated by the score at position s ∈
[0, S]. While this encoding can be convenient, it is important not to identify piano-rolls with

scores. A piano-roll discards substantial information about the score, which can be difficult

to reconstruct post-hoc (the encoding of scores as piano-rolls is not injective). More subtly,

most piano-rolls do not correspond to any score (the encoding is not surjective). We refer the

reader to the concepts of a pscore and a symbp, introduced in Section 3.1.2, for examples

of piano-rolls that have very different structure than a score, but can also be encoded by

piano-rolls. We discuss more sophisticated encodings of scores at length in Section 4.1.

Given a tempo marking, e.g., 120 beats per minute, we can convert between time in a

score and time in an ideal performance of that score. A human performer will not play at

the exact given tempo, nor will they hold a constant tempo throughout their performance.

Constructing an accurate alignment of time in a score with time in an expressive human

performance of that score is discussed in Section 3.1. As a convention, we measure time in a

score with units of beats; a score defined on the interval [0, S) is S beats long. In contrast,

we measure time in a performance in units of seconds; a performance on the interval [0, T)

is T seconds long.

9

Figure 2.2: A digital audio recording of a musical performance.

An acoustic musical performance is transmitted to the human ear in the form a non-

stationary audio wave. By convention, we normalize the global amplitude of this wave to

the interval (−1, 1).

Definition 2.2. An audio wave of length of T is a real-valued function audio : [0, T) →
(−1, 1).

A performance be can recorded by a microphone, and represented digitally by a sequence

of recorded real-valued air pressure readings sampled at discrete time steps. The Nyquist-

Shannon sampling theorem guarantees that frequency content below f hertz is completely

determined by samples taken at a constant frequency 2f hertz [Lüke, 1999]. The limit of

human acoustic frequency perception is bounded above by approximately f = 20kHz [Ross-

ing, 2007], so the perceptible content of an acoustic performance is fully captured using a

sampling rate greater than 40kHz. Real pressure values can be be stored as floating point

values, or quantized using integer values; a sequence of quantized pressure readings sampled

at a constant rate is known as pulse-code modulation (PCM) [Black and Edson, 1947]. For

example, Standard CD-quality audio is stored using the PCM format with linearly quan-

tized 16-bit values sampled at 44.1kHz, resulting in a vector representation X ∈ Z44,100×T

for an audio performance of length T where Xt = b215 × audio(t/44, 1000)c. In contrast

to scores and piano-rolls, acoustic performances and their discretized vector encodings are

approximately isomorphic.

10

2.2 Generative Modeling

Generative modeling asks the following question: how can we (approximately) sample from

an unknown probability distribution p over a space X , given independent observations

x1, . . . ,xn ∼ p? An answer to this question consists of procedure that, when followed,

generates samples x ∼ p̂ where p̂ ≈ p. Throughout this work, we will presume access to

samples from simple distributions such as Uniform(0, 1). We can construct more rich random

variables given a primitive source of uniform randomness using a pushforward construction.

Definition 2.3. Given a probability space (Z, q), a (measurable) function g : Z → X induces

a pushforward distribution on X defined, for any (measurable) set A ⊂ X by

Pr(A) =

∫
g−1(A)

q(z) dz. (2.1)

For example, suppose we want to sample from a biased coin, i.e., x ∼ Bernoulli(p). Defin-

ing g(z) = 1z<p with z ∼ Uniform(0, 1) induces the desired pushforward distribution g(z) ∼
Bernoulli(p). A more interesting example is the Box-Muller transform [Box and Muller,

1958], which induces a N (0, 1) pushforward when applied to inputs z ∼ Uniform(0, 1).

Generating samples x ∼ p using a pushforward of a primitive source of randomness

is sometimes called simulation of p in the statistics community. In the machine learning

community, the function g : Z → X is often called a generator and constructing such

a function is called generative modeling. Formally, a generative model is a function (a

generator) g : Z → X that maps uniform random variables z ∼ Uniform(0, 1)d to structured

ouputs x = g(z) ∼ p̂ such that p̂ ≈ p.

Definition 2.4. Let x1, . . . ,xn ∈ X be independent, identically distributed samples from p.

A generative model of observations x1, . . . ,xn is a function (a generator) g : (0, 1)d → X
that induces a pushforward distribution g(z) ∼ p̂ such that p̂ ≈ p.

A good generative model is one that minimizes error in the approximation p̂ ≈ p. How

do we measure this error? Evaluation of generative models is a difficult problem that we will

11

revisit throughout this work. To talk about approximations, we must put a topology on the

space of probability measures. By far the most popular topology on probability distributions

is the topology of KL divergence, and one natural measure of the approximation error of a

generative model is D(p ‖ p̂). This choice is also convenient because, while we cannot

analytically compute this information divergence—we do not know p—we can compute a

Monte Carlo estimate of the related cross-entropy from samples.

Definition 2.5. The cross-entropy of a distribution p̂ relative to p is given by

H(p, p̂) ≡ E
x∼p
− log p̂(x). (2.2)

If H(p) denotes the (unknown) entropy of p then it is easy to show that H(p, p̂) =

H(p) + D(p ‖ p̂) [Cover and Thomas, 2001]. The cross entropy is a useful information

functional because it can be estimated from samples using a straightforward Monte Carlo

estimator:

H(p, p̂) = −
∫
X
p(x) log p̂(x) dx ≈ − 1

n

n∑
i=1

log p̂(xi), where xi ∼ p. (2.3)

This approach to evaluation underlies the cross-entropy metric developed in Chapter 4.

However, it requires the construction of an explicit density estimator p̂(xi) which, as we will

see next, not all generative models provide. Because of this complication, we take a different

approach to evaluating generative models in Chapter 5.

Some of the methods considered in this work do not fit the density estimation framework.

Recall that our goal is to sample from x ∼ p̂. A density estimator provides us with values

p̂(x). It is usually a mechanical exercise to construct a generator to simulate samples from

a given density p̂(x). But if all we want is a sample, construction of a density estimate

p̂(x) may not be necessary. In Section 2.5 (generative adversarial networks) and Section 2.7

(energy-based models) we will see generative models that do not explicitly estimate p̂(x).

These models define a generator of the pushforward distribution p̂, but inferring p̂(x) for a

12

particular value of x may be quite difficult.

To see why this could be, suppose p̂ is defined implicitly as the pushforward of a density

q by an invertible generator g : Z → X . Changing variables from z to x, we see that

Pr(A) = Pr(g−1(A)) =

∫
g−1(A)

q(z) dz =

∫
A

q(g−1(x))|∇xg
−1(x)| dx. (2.4)

Therefore, the density q(z) pushes forward to

p̂(x) = q(g−1(x))|∇xg
−1(x)|. (2.5)

If the inverse and Jacobian of g are easily computable, then we can use Equation (2.5) to

convert a generator into a density estimator. But we are interested in learning rich distri-

butions over highly structured data. A generator g that accurately models this distribution

may not have an easily computable inverse or Jacobian. Nevertheless, the pushforward dis-

tribution p̂ induced by g could be a very good estimate of p. And it is easy to generate

samples x = g(z) ∼ p̂ given samples z ∼ q.

In the remainder of this chapter we survey of various answers to these modeling chal-

lenges. One option is construct an explicit density estimator, which usually involves factoring

a high-dimensional joint distribution into smaller conditional distributions with manageable

partition functions; this approach is taken by the autoregressive models [Larochelle and

Murray, 2011] discussed in Section 2.3. Another approach is to construct an estimate of

the objective, e.g., Equation (2.17), and optimize with respect to this proxy estimate; two

very different approximation methods are the variational autoencoders [Kingma and Welling,

2014] and generative adversarial networks [Goodfellow et al., 2014] described in Sections 2.4

and 2.5 respectively. Alternatively, we can construct explicit, high-dimensional density esti-

mators using restricted parameterized function families {gθ, θ ∈ Θ} that support efficiently

and exactly computable inverses and Jacobians. This approach is taken by the flow-based

models [Dinh et al., 2017] that we discuss in Section 2.6. This approach trades of expressiv-

13

ity in the parameterization of the model for computational tractability. Another option is

to try to conquer the challenge of computing inverses and Jacobians for more general func-

tion families; this approach is less well-developed, but is partially addressed by Hand and

Voroninski [2020], Ma et al. [2018]. Finally, in Section 2.7 we consider some several variants

of the energy-based modeling paradigm [Hinton, 2002, LeCun et al., 2006], which model

un-normalized energy functions rather than probability densities and rely on Markov-chain

Monte Carlo generation procedures to construct samples [Song and Ermon, 2019].

2.3 Autoregressive Sequence Models

In this section, we consider structured data of the form x ∈ RT×d, which we will interpret

as a sequence of d-dimensional vectors xt indexed by a discrete temporal value 0 ≤ t < T .

Examples of sequential data include both discretized piano rolls (Definition 2.1) and sampled

audio waves (Definition 2.2). Our goal is to construct a generative model of an unknown

probability distribution p, based on observed sequences x1, . . . ,xn ∼ p. For time series, we

will index sequences with a superscript to distinguish this index from the temporal index.

In this section, we consider autoregressive models as a tool for generative modeling. Den-

sity estimation using autoregressive models is a ubiquitous modern approach to generative

modeling in the music community. These models largely follow the neural autoregressive

distribution estimation paradigm (NADE) [Larochelle and Murray, 2011] discussed below.

Autoregressive models in the audio domain include WaveNet [van den Oord et al., 2016a],

SampleRNN [Mehri et al., 2017], and Jukebox [Dhariwal et al., 2020]. Autoregressive models

of symbolic music include the BachBot [Liang et al., 2017] and Music Transformer [Huang

et al., 2019], as well as the models constructed in Chapter 4 of this dissertation. Methodol-

ogy for smoothing discretized autoregressive models is developed in Chapter 5, which allows

these models to be combined with Langevin sampling techniques (Section 2.7).

An autoregressive model parameterizes the conditional distributions pθ(xt|x<t) over val-

ues xt given preceding values x<t = {x0, . . . , xt−1}, with parameters θ. The chain rule

for probabilities allows us to factor the joint distribution over sequences x into conditional

14

distributions over items in the sequence:

pθ(x) =
T∏
t=1

pθ,t(xt|x<t). (2.6)

Given a collection of conditional estimates pθ,t(xt|x<t), we can sample from the model pθ(x)

by iteratively sampling x̂t ∼ p̂θ,t(·|x̂<t); which we will refer to as the ancestral sampler. An

autoregressive model is a density estimator, in the sense that assigns a normalized probability

pθ(x) to any given sequence x. Because we can efficiently compute probability densities under

the model, we can train an autoregressive models using maximum likelihood estimation and

evaluate a trained model using empirical cross-entropy.

We can parameterize an autoregressive model over discrete values xt using a softmax nor-

malization pθ,t(xt|x<t) = softmax(fθ,t(x<t)), where the function fθ,t : R(t−1)d → Rd is defined

by a neural network with weights θ. This possibility was observed by Bengio and Bengio

[1999], applied to language modeling by Bengio et al. [2003], and further developed into its

modern incarnation by Larochelle and Murray [2011]. Neural parameterization can be ex-

tended to model continuous time-series, using the outputs fθ,t to parameterize a continuous

distribution over the conditionals p(xt|x<t), instead of a softmax. This idea is developed

under the name real-valued NADE (RNADE) [Uria et al., 2013]. Deep neural parameteri-

zations of NADE are developed in detail by Uria et al. [2016]. Both Uria et al. [2016] and

van den Oord et al. [2016b] develop the idea of a convolutional NADE, making use of the

convolutional neural network architecture [LeCun et al., 1989]. The modern, efficient im-

plementation of NADE using input masks was introduced by [Germain et al., 2015], and is

often combined with a Transformer neural network parameterization [Vaswani et al., 2017].

2.4 Variational Autoencoders

In contrast to the autoregressive models discussed in Section 2.3, the variational autoencoder

(VAE) [Kingma and Welling, 2014] does not construct an explicit density estimator p̂(x).

Instead, the VAE constructs a generator function (Definition 2.4) together with a variational

15

approximation for the density of the pushforward distribution induced by this generator.

These pairs of generators and variational approximators are are typically referred to as

decoders and encoders respectively; together, a decoder/encoder pair can be interpreted as

an autoencoder [Vincent et al., 2010]. The MusicVAE [Roberts et al., 2018] describes an

application of a variational autoencoders as a generative model of symbolic music. Although

the VAE does not directly model variable-length sequences, local VAE model of fixed windows

of sequential data is often used in conjunction with a global autoregressive model over latent

codes of the VAE [Chung et al., 2015, van den Oord et al., 2017]. These hybrid models are

used to construct a generative model of audio by Dhariwal et al. [2020].

The VAE models a distribution p(x) by introducing a latent variable z ∼ r on an auxiliary

space Z and a parameterized likelihood pθ(x|z). Together, r(z) and pθ(x|z) define a joint

distribution over (x, z) ∈ X × Z. A density estimator for the data distribution is implicitly

defined by

pθ(x) =

∫
Z
pθ(x|z)r(z) dz. (2.7)

We can sample from pθ(x) by first sampling a latent z ∼ r, and then sampling x ∼ pθ(·|z).

The idea is to use a simple prior distribution r(z), e.g., N (0, I), and parameterize the

conditional distribution pθ(x|z) with an expressive model. In contrast to ancestral sampling

from an autoregressive model (Section 2.3) which requires d serial evaluations of the model

to generate a sample x ∈ Rd, a latent variable model can produce a sample with just one

evaluation of the model that parameterizes pθ(x|z).

Directly evaluating the density pθ(x) requires computation of Equation (2.7), which makes

direct maximum likelihood training and cross-entropy evaluation difficult. This is also a

potential obstruction to using a VAE with the sampling techniques developed in Chapter 5.

We can construct a variational lower bound on log pθ(x) using a proposal distribution q(z|x)

as an importance sampler [Burda et al., 2016]:

log pθ(x) = log E
zi∼q(·|x)

[
M∑
i=1

pθ(x, zi)

q(zi|x)

]
≥ E

zi∼q(·|x)

[
log

M∑
i=1

pθ(x, zi)

q(zi|x)

]
. (2.8)

16

When M = 1 we recover the evidence lower-bound described by Kingma and Welling [2014].

The bound becomes tight when q(z|x) = pθ(z|x), the posterior distribution over z. Us-

ing a variational lower bound like Equation (2.8), we can rephrase empirical cross-entropy

minimization (Equation (2.3)) as a variational optimization. This allows us to re-write the

maximum likelihood objective as

θ∗ = arg max
θ

sup
q

E
x∼p

log pθ(x) = arg max
θ

sup
q

E
x∼p

E
zi∼q(·|x)

[
log

M∑
i=1

pθ(x, zi)

q(zi|x)

]
. (2.9)

The proposal family q is typically chosen to be another expressive, neural parameterization

qϕ(z|x). This approach is sometimes called amortized inference [Shu et al., 2018] because

we replace an expensive computation of the posterior at each value of x with a model that

approximates the posterior across all values of x.

One way to evaluate a VAE is to report a Monte Carlo estimate of Equation (2.8) on fresh

samples x1, . . . ,xm ∼ p. If q effectively approximates the posterior pθ(z|x) then Equation

(2.8) will be a relatively accurate estimate of the log-likelihood. This is conservative estimate,

in the sense that it is a lower bound on the true log-likelihood, and will therefore be an overly

pessimistic estimate of the cross entropy H(p, p̂). We can sharpen the estimate by evaluating

Equation 2.8 with M > 1 [Burda et al., 2016, Tomczak and Welling, 2018].

log pθ(x) = log E
z∼q(·|x)

[
pθ(x, z)

q(z|x)

]
≈ log

1

M

M∑
i=1

pθ(x|zi)r(zi)
q(zi|x)

, where zi ∼ q(z|x). (2.10)

For any finite M (2.8) is an an upper bound on the log-likelihood, and as M →∞, the bound

becomes tight. Because we cannot compute an exact log-likelihood, we will not consider

the VAE when evaluating the conditional sampling methodology developed in Chapter 5.

However, it would be possible to extend these results to VAE’s using Equation (2.10), where

M becomes an additional hyper-parameter that controls a tradeoff between sample quality

and computational efficiency.

17

2.5 Generative Adversarial Networks

Like the VAE discussed in Section 2.4, a generative adversarial network (GAN) [Goodfellow

et al., 2014] is a procedure for generating samples from a pushforward distribution (Defini-

tion 2.3) that avoids construction of an explicit density estimator pθ(x). Unlike the VAE,

there is no easy way to even approximate the density that a GAN assigns to data. For

this reason, GAN’s are sometimes referred to as implicit generative models [Mohamed and

Lakshminarayanan, 2016]. Implicit generative modeling poses challenges for both training

and evaluation, cannot be easily combined with the Bayesian sampling methods developed

in Chapter 5. Nevertheless, GAN’s have dominated the generative modeling field since their

introduction in 2014; notable examples in the audio domain include WaveGAN [Donahue

et al., 2019a], GanSynth [Engel et al., 2019], and MelGAN [Kumar et al., 2019]. Curiously,

these models have had surprisingly little influence in generative modeling of symbolic data

(including written language and musical scores).

A GAN is an optimization procedure that constructs a parameterized generator function

gθ : Rd → X (Definition 2.4) by solving a saddle point problem. First we attempt to

estimate a lower bound on a measure of divergence (e.g., the KL-divergence) between the

true distribution p and the pushforward distribution pθ induced by gθ (Definition 2.3). (e.g.,

the KL-divergence). Given an estimate of this divergence, we attempt to minimize the lower

bound. This procedure should be contrasted with the VAE (Section 2.4) where we instead

estimate an upper bound on the divergence.

Definition 2.6. Let f : R → R be a convex, lower-semicontinuous function, such that

f(1) = 0. We define the f-divergence between two distributions with densities p and pθ on

X by

Df (p ‖ pθ) ≡
∫
X
pθ(x)f

(
p(x)

pθ(x)

)
dx. (2.11)

An f -divergence generalizes the KL-divergence between two probability distributions.

For example, if we take f(t) = t log t then Df (p ‖ pθ) = D(p ‖ pθ). We can construct a lower

18

bound on a f -divergence Df (p ‖ pθ) without explicit evaluation of the density pθ(x). To do

this, we introduce the convex conjugate of f , defined by f ∗(s) ≡ supt{st− f(t)}, which can

be lifted into a variational representation of the f -divergence [Nguyen et al., 2010] with the

following form:

Df (p ‖ pθ) = sup
T :X→R

[
E

x∼p
T (x)− E

x∼pθ
f ∗(T (x))

]
. (2.12)

The f -GAN uses this variational form of the f -divergence to formulate a saddle point prob-

lem [Nowozin et al., 2016]. Using an expressive parameterized family of functions Tϕ to

approximate T , we can minimize an f -divergence between p and pθ by optimizing

θ∗ = arg min
θ

sup
ϕ

[
E

x∼p
Tϕ(x)− E

x∼pθ
f ∗(Tϕ(x))

]
. (2.13)

A second notable GAN formulation is the Wasserstein GAN [Arjovsky et al., 2017], which

instead seeks to minimize an optimal transport distance

W (p, pθ) = inf
π∈Π(p,pθ)

E
(x,y)∼π

[‖x− y‖2] . (2.14)

The notation Π(p, q) denotes the collection of probability distributions π(x,y) on the product

space X × X with marginals p(x) and pθ(y) respectively. We refer the reader to Peyré and

Cuturi [2019] for motivation of the Wasserstein distance and further discussion of optimal

transport. As written in Equation (2.15), the inner estimation of the Wasserstein distance

W (p, pθ) is intractable. But a duality argument allows us to reformulate the Wasserstein

distance as the solution to a maximization over 1-Lipschitz functions, the Kantorovich-

Rubinstein duality [Villani, 2009]:

W (p, q) = inf
π∈Π(p,pθ)

E
(x,y)∼π

[‖x− y‖2] = sup
‖h‖L≤1

[
E

x∼p
[h(x)]− E

x∼pθ
[h(x)]

]
. (2.15)

This turns the Wasserstein GAN optimization problem into a saddle-point problem with a

remarkably similar form to the f-GAN: compare Equation (2.12) to Equation (2.15).

19

2.6 Generative Flow

Generative flow, or flow-based modeling describes a family of density estimators that param-

eterize a pushforward distribution (Definition 2.3) using discrete flow networks [Dinh et al.,

2017], which permit efficient calculation of inverse and Jacobian operations. Flow-based

models have been applied extensively to generative modeling in the audio domain. Notably,

the Parallel WaveNet model uses a student-teacher paradigm to distill an autoregressive

WaveNet model into a flow-based model that can be sampled efficiently [van den Oord et al.,

2018]. Direct flow-based models of audio waves include WaveGlow [Prenger et al., 2019],

FlowWavenet [Kim et al., 2019], and WaveFlow [Ping et al., 2020]. We will use a flow-based

model [Kingma and Dhariwal, 2018] in Chapter 5 as a Bayesian prior for source separation.

Let pθ be defined implicitly as the pushforward of a density q using a generator gθ : Z → X
(Definition 2.3). In Equation (2.5), we showed that the density q(z) pushes forward to

pθ(x) = q(g−1
θ (x))|∇xg

−1
θ (x)|. (2.16)

In general this density is difficult to calculate, which lead to our discussions of the VAE in

Section 2.4 and the GAN in Section 2.5, which construct optimization objectives that avoid

explicit evaluation of Equation (2.16). But if the model class {gθ : θ ∈ Θ} is chosen carefully

so that inverses and Jacobians of gθ are easily computed, then we can use Equation (2.16)

to convert a generator into a density estimator. Furthermore, we can train this generator

using maximum likelihood estimation: given i.i.d. samples x1, . . . ,xn ∼ p,

θ∗ = arg max
θ

E
x∼p

log pθ(x) ≈ arg min
θ

n∑
i=1

− log q(g−1
θ (xi))− logdet∇xg

−1
θ (xi). (2.17)

An idea that adapts flow to parameterize a pushforward distribution is developed by

Dinh et al. [2015]. The idea is to partition features of the data x ∈ X into two sets. For

example, if X = Rd then we can partition X into the first d/2 and second d/2 features:

x = (x1,...,d/2, xd/2+1,...,d). We parameterize a function hθ : Rd/2 → Rd/2 using an expressive

20

neural network, and proceed to construct an additive coupling gθ : Rd → Rd defined by the

rule x = gθ(z) where

x1:d/2 = z1:d/2, (2.18)

xd/2+1:d = zd/2+1:d + hθ(z1:d/2). (2.19)

This coupling function is invertible: given x ∈ Rd, we can recover z = g−1
θ (x) by

z1:d/2 = x1:d/2, (2.20)

zd/2+1:d = xd/2+1:d − hθ(x1:d/2). (2.21)

And the Jacobian of the inverse transformation is simply

∇xg
−1
θ (x) =

 Id/2 0

−∂hθ(x1:d/2)

∂x1:d/2
Id/2

 . (2.22)

Therefore logdet(∇xg
−1
θ (x)) = 0: this is a volume-preserving transformation.

While an additive coupling is not very expressive (it is the identity on half of the features)

the idea is to chain multiple affine couplings g
(k)
θ together (with different partitions at each

step) to construct a deep network gθ(z) = g
(L)
θ ◦ · · · ◦ g(1)

θ (z). Curiously, these chains of

additive couplings are the same construction as the Feistel network [Luby and Rackoff, 1988]

used in the cryptography community to construct ciphers (e.g., DES and Blowfish). Even at

significant depth, generative flow models seem to suffer empirically from this restrictive model

structure, requiring substantially more parameters and training time than other modeling

techniques (at least for popular vision tasks). Some preliminary work that attempts to

remove the architectural restrictions using approximations to the inverse and its Jacobian

are presented by Keller et al. [2020].

One simple extension of additive flow is the real non-volume preserving transformation

(realNVP) [Dinh et al., 2017] which replaces the additive couplings (2.18) and (2.19) with

21

affine couplings. Given parameterized scale and translation functions sθ, tθ : Rd/2 → Rd/2,

we define an affine coupling by x = gθ(z) by

x1:d/2 = z1:d/2, (2.23)

xd/2+1:d = zd/2+1:d� exp(sθ(z1:d/2)) + tθ(z1:d/2). (2.24)

The multiplicative scaling � should be interpreted elementwise. The Jacobian in this case is

∇xg
−1
θ (x) =

Id/2 0

. . . diag
(
exp(−sθ(x1:d/2))

)
 (2.25)

And the log determinant of the Jacobian is just

logdet(∇xg
−1
θ (x)) = −

d/2∑
i=1

sθ(x1:d/2)i. (2.26)

This idea is explored at scale by Kingma and Dhariwal [2018] to create the Glow models

that we use extensively in Chapter 5.

2.7 Energy-Based Models

The idea of an energy-based model (EBM) [Hinton, 2002, Ranzato et al., 2007] is, rather

than explicitly learning a probabilistic model pθ(x) over a space X , to instead learn an energy

functional Eθ : X → R. This energy functional can be used to implicitly define a probability

distribution, for example a Gibbs distribution

pθ(x) =
1

Zθ
e−Eθ(x), where Zθ =

∫
X
e−Eθ(y) dy. (2.27)

The point is that, while it is easy to construct a function Eθ(x), it can be quite challenging

to enforce the constraint
∫
X pθ(x) = 1, or to compute the partition function Zθ for a given

energy function Eθ(x).

22

To use an EBM as a generative model, we need to solve two problems. First, we need

a training procedure for optimizing the parameters of the energy function Eθ so that the

implicit distribution pθ(x) approximates the data generating distribution p(x). Second, we

need a sampling procedure for drawing samples x ∼ pθ. Solutions to both problems should

avoid calculation of the intractable integral Zθ. For early approaches to this problem based

on the contrastive divergence, see Hinton [2002] and Hinton et al. [2006]. For a modern,

empirical realization of these ideas see Du and Mordatch [2019]. These ideas have been

applied to generative modeling in the audio domain in recent concurrent work by Kong et al.

[2021] (DiffWave) and Chen et al. [2021] (WaveGrad). We will use an energy-based model

[Song and Ermon, 2019] in Chapter 5 as a Bayesian prior for source separation.

Sampling from an EBM. Suppose we have a model Eθ and we want to sample from the

implied distribution x ∼ pθ. While directly sampling from pθ is difficult, we can approximate

samples using a Markov chain with stationary distribution pθ. One Markov chain on X = Rd

with the required stationary distribution is the Langevin diffusion; this is a continuous

Markov process with dynamics given by the stochastic differential equation

∂xt
∂t

= ∇x log pθ(xt) dt+
√

2 dWt, (2.28)

where dWt is a white noise process, given by the derivative of standard Brownian motion Wt.

The Fokker-Planck equation establishes that a diffusion following these dynamics converges

asymptotically to samples xt ∼ pθ, in the sense that D(xt ‖ pθ)→ 0 as t→∞. This general

Langevin-based Markov-chain Monte Carlo sampler was first proposed by Grenander [1983],

Grenander and Miller [1994]. For an expository treatment of these ideas, see Pavliotis [2014].

We cannot exactly construct a diffusion xt that follows the dynamics of Equation (5.1)

using numerical methods. In practice, we will discretize the diffusion and follow a discrete

Markov chain driven by i.i.d. Gaussian noise εt ∼ N (0, I):

xt+1 = xt − η∇x log pθ(xt) +
√

2ηεt. (2.29)

23

Equation (5.1) is referred to as the unadjusted Langevin algorithm [Roberts and Tweedie,

1996, Durmus and Moulines, 2017]. It can be viewed as the stochastic analog to an Euler

discretization of a deterministic differential equation. As η → 0, the approximation to

the continuous dynamics of Equation (5.1) becomes more precise, but mixing is slow; an

effective accelerated mixing algorithm based on simulated annealing [Kirkpatrick et al., 1983]

is developed by Song and Ermon [2019]; we build upon these techniques in Chapter 5. We

can use the unadjusted Langevin algorithm to sample from an energy based model, because

∇x log pθ(x) = −∇xEθ(x)−∇x logZθ = −∇xEθ(x). (2.30)

Training an EBM. A direct approach to modeling the score function s : Rd → Rd

defined by x 7→ ∇x log p(x) (or equivalently, x 7→ ∇xEθ(x)) is described by Song and

Ermon [2019]; we use models based on this approach extensively in Chapter 5. Want can

parameterize the score function with a neural network sθ : Rd → Rd, which implicitly defines

an energy function Eθ : Rd → R (by integration) and a density pθ (by normalization). We

can fit this score function by minimization of the Fisher divergence

DFisher(p ‖ pθ) ≡ E
x∼p

[
1

2

∥∥∥∥∇x log
p(x)

pθ(x)

∥∥∥∥2

2

]
= E

x∼p

[
1

2
‖sθ(x)−∇x log p(x)‖2

2

]
. (2.31)

There is a precise connection between Fisher divergence and the rate of change in KL-

divergence over smoothed versions of p sand q [Lyu, 2009]. Define x̃t = x +
√
tεx and

ỹt = y +
√
tεy, where x ∼ p, y ∼ q, and εx, εy ∼ N (0, I) (independent samples). Let

pt(x̃t) and qt(ỹt) denote the densities of x̃t and ỹt respectively; adding Gaussian noise to x,y

corresponds to smoothing of their probability densities (Gaussian convolution). Under mild

regularity conditions,
d

dt
D(pt ‖ qt) = −DFisher(pt ‖ qt). (2.32)

Because Fisher divergence is non-negative, integrating we see that D(pt ‖ qt)→ 0 as t→∞,

and this convergence is monotonic.

24

We cannot directly compute the score matching objective, because it required evaluation

of (gradients of) the unknown density p(x). But a result by Hyvärinen [2005] shows how we

can minimize it implicitly:

arg min
θ

E
x∼p

[
1

2
‖sθ(x)−∇x log p(x)‖2

2

]
= arg min

θ
E

x∼p

[
tr (∇xsθ(x)) +

1

2
‖sθ(x)‖2

2

]
. (2.33)

The right-hand side of Equation (2.33) can be approximated by Monte Carlo estimation. But

this is not yet a convenient objective, because tr(∇xsθ(x)) is a second-order statistic: the

trace of the Hessian of log pθ(x). Song et al. [2019] proposed a tractable variant by minimizing

Equation (2.31) along random projections v ∼ r, e.g., from a Gaussian r = N (0, I):

L(θ, v) ≡ E
x∼p

[
1

2

(
vT sθ(x)− vT∇x log p(x)

)2
]
. (2.34)

Applying Proposition ?? yields an objective that can be estimated from samples:

arg min
θ

E
v∼r

L(θ, v) = arg min
θ

E
v∼r

vT E
x∼p

[
1

2
‖sθ(x)−∇x log p(x)‖2

]
v (2.35)

= arg min
θ

E
v∼r

vT E
x∼p

[
tr (∇xsθ(x)) +

1

2
‖sθ(x)‖2

2

]
v (2.36)

= arg min
θ

E
v∼r
x∼p

[
vT∇xsθ(x)v +

1

2

(
vT sθ(x)

)2
]
. (2.37)

Equation (2.37) involves only Hessian-vector products, which can be computed with time

complexity that is independent of the data dimension. So long as our random projections

v ∼ r span Rd, we can recover the data generating distribution p(x) by minimizing the

expected loss L(θ, v). To be precise, if p(x) = pθ∗(x) for some value of the parameters θ∗

(the data-generating distribution is realizable) and if r is positive definite (i.e., Ev∼r[vvT] � 0)

then Ev∼r L(θ, v) = 0 if and only if θ = θ∗ [Song et al., 2019].

25

Chapter 3

MUSIC ALIGNMENT AND TRANSCRIPTION

Music transcription can be framed as a structured prediction task, which requires us

to predict a score (for example, a piano roll described by Definition 2.1) given an audio

recording of that score (as described by Definition 2.2). We can view this task as a conditional

generative modeling problem, in which we seek to estimate the distribution p(score|audio).

Because both score and audio objects have a temporal axis, we can also view this as a

sequence-to-sequence learning problem [Sutskever et al., 2014]. Learning the conditional

distribution can be supervised by collections of (audio, score) pairs.

In this chapter we focus on a simplified transcription task: frame-based music transcrip-

tion [Bay et al., 2009]. This task, which we formalize in Section 3.3.2, requires us to predict

a performance-aligned score, pscore, aligned to a given audio recording audio. We can

again view this task as a conditional generative modeling problem: estimate the distribution

p(pscore|audio). Frame-based transcription can be a convenient simplification of the tran-

scription task, because it eliminates the problem of constructing a global alignment between

a score and a performance timings, focusing our attention on the relatively local problem of

extracting the precise content of an acoustic signal at any given time in the recording. The

frame-based simplification of transcription is so standard that it is often identified with the

broader music transcription problem in the music information retrieval literature.

While the frame-based simplification of music transcription can be a convenient formu-

lation of a learning problem, it has shortcomings. From a practitioner’s perspective, the

output of a frame-based transcription algorithm (a pscore) is not an object that a musician

would recognize as a score. Indeed, a pscore cannot be typeset as a score without solving an

additional structured prediction task: prediction of a score given a pscore. Little work has

26

been done on this latter problem, and without a robust algorithm for converting pscore’s

to score’s, it is difficult to advocate for frame-based transcription as a complete solution to

the music transcription problem.

From a researcher’s perspective, frame-based transcription simplifies the learning problem

at the expense of complicating the data collection process. The supervision required to learn

a conditional model p(score|audio) is a simple collection of (audio, score) pairs; scores and

performances are available in abundance, and pairing up audio files with the corresponding

scores is generally a straightforward task using metadata. But frame-based transcription

requires pairs (audio,pscore). Performance-aligned scores are not readily available, and

must be constructed from a score for any given performance. Consequently, after gathering a

collection of (audio, score) pairs, we must then somehow convert our score’s into pscores’s

using some variant of a procedure known as audio-to-score alignment.

The objective of this chapter is to build towards a solution to the frame-based music

transcription problem. Because alignment algorithms play a fundamental role in constructing

datasets for this task, it is natural to ask: how do we evaluate an alignment algorithm? We

pose this question in Section 3.1. Answering this question requires a precise definition of what

constitutes an alignment; we propose a formal definition of an alignment in Section 3.1.1 and

define the notion of a ground-truth alignment in Section 3.1.2. We review previous efforts to

evaluate alignments in Section 3.1.3, and proceed in Section 3.1.4 to construct a dataset for

evaluating alignments based on these principles introduced in Section 3.1.2. In Section 3.2

we put an alignment algorithm to use, constructing the MusicNet dataset: a collection

of freely-licensed recordings of chamber music performances together with corresponding

performance-aligned scores. Using the evaluation framework developed in Section 3.1, we

quantify the behavior of the alignment algorithm used to construct MusicNet in Section 3.2.3.

We proceed to consider the quality of the alignments constructed using this algorithm in

Section 3.2.4 and Section 3.2.5. Finally, we construct and train models for the frame-based

transcription task using the aligned MusicNet dataset in Section 3.3. We are particularly

interested in answering the following question: are time-frequency representations of audio

27

(Section 3.3.3) an advantageous featurization of musical recordings, or should we prefer to

learn to transcribe directly from raw audio (Section 3.3.4)? In Section 3.3.6, we study these

questions using MusicNet.

3.1 Audio-to-Score Alignment

Audio-to-score alignment is a fundamental problem in music information retrieval [Sakoe

and Chiba, 1978] with applications ranging from score following [Dixon, 2005] to music

transcription [Turetsky and Ellis, 2003]. The concept of an alignment is typically given by

an intuitive definition, for example:

1. “Music alignment is the association of events in a score with points in the time axis of

an audio signal.” [Orio and Schwarz, 2001].

2. “A procedure which, for a given position in one representation of a piece of music,

determines the corresponding position within another representation.” [Ewert et al.,

2009].

3. “Match notes in a music performance signal (called an aligned signal) to those in a

reference musical score or another performance signal (reference signal).” [Nakamura

et al., 2017].

We identify two problems with deferring to intuition for such a foundational concept.

First, as we will discuss in Section 3.1.1, these definitions are subtly inconsistent with each

other. This is a potential source of confusion in how the community thinks and talks about

alignments. Second, while the definition of an alignment is vague, the traditional metrics

used to evaluate alignments are quite precise (see Section 3.1.2). In the absence of an explicit

definition of an alignment, these metrics become an implicit substitute for a definition. This

is a problem if these metrics fail to capture the right intuitive concept. Furthermore, without

a precise definition, it is difficult to critically analyze how well these metrics measure the

concept of a good alignment.

28

With the aim of developing a principled methodology for evaluating the quality of an

audio-to-score alignment algorithm, we formalize a definition of an alignment in Section

3.1.1. In Section 3.1.2, we introduce the concept of a ground-truth alignment and method-

ology for evaluating an alignment algorithm: the idea is to measure an alignment algorithm

by its ability to accurately approximating a ground-truth alignment. In Section 3.1.3 we

consider previous methodologies for evaluating alignment algorithms, and the difficulties

these methods face. In Section 3.1.4 we introduce an dataset of approximate ground-truth

alignments, which can be used to evaluate alignment algorithms using the methodology in-

troduced in Section 3.1.2. We will use these methods in Section 3.2 to evaluate the alignment

algorithm used to construct the MusicNet dataset.

3.1.1 A Definition of an Alignment

Given a score of length S and an expressive performance of this score of duration T , we

define an audio-to-score alignment to be a function of the following form.

Definition 3.1. A (temporal) audio-to-score alignment is a monotonic real function τ :

[0, S) → [0, T) that assigns each position s ∈ [0, S) in the score to a time t = τ(s) ∈ [0, T)

in the audio performance.

This definition is expansive, intended to capture all functions that could meaningfully be

interpreted as alignments. We introduce the concept of the best alignment between a score

and a performance in Section 3.1.2.

Definition 3.1 formalizes the concept of a temporal alignment, described clearly by Ewert

et al. [2009] (quoted at the top of Section 3.1, Item 2). An alternate definition, that we will

refer to as a note-based alignment, is eloquently stated by Nakamura et al. [2017] (quoted

at the top of Section 3.1, Item 3). Whereas Ewert et. al. view alignments as functions

(i.e., “procedures”) that map positions in one sequence to another, Nakamura et. al. view

alignments as functions (i.e., “matchings”) that map notes in one sequence to another.

Both perspectives on alignment are common in the literature, although the definition of an

29

Performance
Aligned Score

Transcribed
Performance

Figure 3.1: Two symbolic performance piano-rolls. Top: a score is aligned to an audio
performance to create a performance-aligned score. Bottom: the same audio performance is
been transcribed to create a performance transcript. Asynchronies and errors in the pianist’s
performance prevent a perfect alignment (red dashes).

alignment is often presented in more ambiguous terms (e.g., the definition quoted at the top

of Section 3.1, Item 1).

Imagine a performer strikes three notes on the fourth beat of a score asynchronously, as

in Figure 3.1. A temporal alignment necessarily maps the onsets of these three notes in the

score to a single point of time in the performance. In contrast, a note-based alignment could

map the onsets of these notes to distinct times in the performance. Note-based alignments

have more flexibility to alter the structure of a score to match the content of an audio

recording. But flexibility comes at a cost. If the note-based alignment maps three notes in

the triad to different times in the performance, then it cannot answer the following question:

at what time in the performance is the fourth beat?

An alignment function τ (Definition 3.1) implicitly assigns notes in a score to time inter-

vals in a performance. If a note spans the interval [s1, s2) in the score, then it aligns to the

interval [τ(s1), τ(s2)) in the performance. Monotonicity ensures that τ(s1) ≤ τ(s2). Map-

ping the timings of all the notes in the score to timings in the performance via an alignment

function yields a performance-aligned score. Given a piano-roll score and an alignment τ to

a performance, we can construct a performance-aligned version of the score with expressive

timings given by τ , which we formalize in Definition 3.2.

Definition 3.2. Given a piano-roll score and an alignment τ , the associated performance-

30

Pe
rfo

rm
an

ce
 A

lig
ne

d
Sc

or
e

(s
ec

on
ds

)

Piano-roll Score (beats)

Figure 3.2: An alignment function τ , that maps time in a score (measured in beats) to time
in a performance (measured in seconds). A piano-roll score is mapped by the alignment to
a performance-aligned score pscoreτ . Time pauses in the score as the performer extends
the triad, resulting in a jump discontinuity in the alignment. Because the alignment τ is not
invertible, the set τ−1(t) may contain 0, 1, or many elements.

aligned score is given by the piano-roll pscoreτ : [0, T)→ {0, 1}N such that

pscoreτ (t) =
∨

s∈τ−1(t)

score(s).

The inverse image of t in τ , denoted by τ−1(t), is the set of times in the score that τ

aligns to time t in the performance. Alignments τ need not be invertible, so the set τ−1(t)

may contain 0, 1, or many elements, as seen in Figure 3.2. The notes in a pscore at time t

are the union of notes denoted in the score at each time s ∈ τ−1(t). We represent notes by

indicators in a binary vector {0, 1}N , so this union can be represented as the bitwise logical

disjunction of these vectors: xn ∨ yn = 1 iff xn = 1 or yn = 1. The
∨

notation in Definition

3.2 indicates bitwise logical disjunction over a collection of values.

We can think of a pscore as a dense, fine-grained local labeling of an audio recording

31

analogous to a semantic segmentation map for visual data [Farabet et al., 2013, Long et al.,

2015, Isola et al., 2017]. Another way to think about Definition 3.2 is that we have elevated

an alignment τ : [0, S) → [0, T) to a function alignτ : Piano Roll → Piano Roll defined by

the rule alignτ (score) = pscoreτ . It is easy to conflate the real function τ with the lifted

function alignτ , or with the image pscoreτ of the score in this lifted alignment function;

this may have contributed to the confusion about definitions alluded to in Section 3.1.

While we have formalized and focused on the concept of a temporal alignment, we em-

phasize that note-based alignment is also an important problem. Audio-to-score alignment

is commonly used as an intermediate tool to facilitate other MIR tasks: score-following,

music transcription, beat tracking, and onset detection, among others. For tasks such as

score following and and beat tracking, we want a temporal alignment that tell us what time

a particular position in the score corresponds to in the performance. For tasks including

frame-based music transcription and onset detection, we would actually prefer a note-based

alignment that tells us where notes in the score occur in the performance. Nevertheless,

we focus on temporal alignments in this work because this is the definition that captures

the notion of an alignment produced by a dynamic time warping algorithm; this family of

algorithms has been used to construct all of the current alignment-based music transcription

datasets discussed in Section 3.2 (including MusicNet).

3.1.2 Alignment Algorithm Evaluation Metrics

To evaluate an alignment algorithm, we want to evaluate the expected quality of the align-

ments it produces. To evaluate the quality of an alignment between a given score and a

corresponding performance, we want to compare to the best, ideal alignment between that

score and performance. Conceptually, this ideal alignment exists and is unique. To convince

ourselves of this, imagine assigning the start of each beat in a score to a specific time in

the performance. This assignment forms a crude, discretized alignment; by carefully inter-

polating this alignment to sub-beats and sub-sub-beats etc., we flesh out the full alignment

function. Such thinking motivated the evaluation procedure described by Raphael [2004],

32

which approximates ground-truth alignments from annotations given by a person, tapping

along to the beat of a performance.

To define the ideal ground-truth alignment, we introduce the concept of a symbolic per-

formance. For example, a symbolic performance could consist of a sequence of notes recorded

by a MIDI keyboard. We can represent a symbolic performance as a piano-roll, denoted by

symbp : [0, T)→ {0, 1}N , defined by the rule symbp(t)n = 1 iff note n is being performed

at time t ∈ [0, T). In contrast to a score, a symbolic performance has expressive timings,

measured in units of seconds (see Figure 3.2). A performance-aligned score is a special case

of a symbolic performance. Another example of a symbolic performance is the output of an

ideal, frame-based music transcription system transcribe : Audio → Piano Roll which, at

any point in an audio performance, indicates the set of notes being performed at that point

in time.

A performance-aligned score is a special case of a symbolic performance. Another example

of a symbolic performance is the output of an ideal, frame-based music transcription system

transcribe : Audio → Piano Roll which, at any point in an audio performance, indicates

the set of notes being performed at that point in time. We consider the acquisition of

symbolic performance transcripts in Section 3.1.4. For now, we assume that we have access

to an accurate transcription of a given audio performance.

We can use symbolic performance transcripts to define ideal ground-truth alignments

between scores and audio performances. Let perform : Score→ Audio denote the action of

a performer, who converts a score into audio through the act of performance. Borrowing the

language of category theory [Mac Lane, 1971], we define an ideal ground-truth alignment to

be an alignment function that makes the following diagram “commute:”

Score Symbolic
Performance

Audio

alignτ∗

perform transcribe

What we mean when we say that the diagram commutes is captured by the following defi-

33

nition.

Definition 3.3. An ideal ground-truth alignment between a score score and an audio per-

formance perform(score) is an alignment τ ∗ such that

transcribe(perform(score)) = alignτ∗(score).

In words: the ideal ground-truth alignment of a score to a given audio performance yields

the same symbolic performance as a perfect transcript of the audio.

Unfortunately, the ideal ground-truth alignments defined in Definition 3.3 do not exist

for most score-performance pairs, because human performances do not faithfully reproduce

a musical score. In some cases, this is due to performance error: the insertion or deletion

of a note that is not reflected in the score. Even for highly-accurate, professional perfor-

mances, the deliberate extensions, asynchronies, and staccato articulations that comprise an

expressive performance prevent an alignment that exactly satisfies equality in Definition 3.3.

Mismatches between a performance-aligned score and a corresponding performance tran-

script are illustrated in Figure 3.1. Observe that, for the score and performance transcript

illustrated in the figure, there is no alignment of the score that is equal to the given perfor-

mance; among other problems, the missing note (marked completely in red) in the second-to-

last beat of the performance cannot be avoided by any performance-aligned score constructed

from a function given by Definition 3.1. We must therefore settle for an approximation to the

equality in Definition 3.3; we discuss how to obtain approximate ground-truth alignments in

Section 3.1.4.

We can measure the quality of a proposed alignment by how well it conforms to the

commutative identity. We first observe that there is an inherent alignment ambiguity between

changepoints in a score. During these intervals, time evolves even though the set of notes

being played does not change. The path the alignment takes between these two score events

is therefore underspecified. This is demonstrated in the left panel of Figure 3.3, where the

ground-truth and candidate alignments satisfy τ(si) = τ ∗(si) at each changepoint si, but

34

Perfect Alignment Alignment with Errors

Figure 3.3: A possible ground-truth alignment (solid) compared to two candidate alignments
(dashed), shown before (top) and after (bottom) linearization. The first candidate alignment
(left) is perfect; its canonical linear representative exactly matches that of the ground-truth.
The second candidate alignment (right) maps score changepoints erroneously; its error is
given by the shaded region.

evolve differently between changepoints. We consider two alignments τ1, τ2 equivalent if

τ1(si) = τ2(si) for every changepoint si in the score. To compare two alignments, we will

compare canonical representatives of their equivalence classes. As a canonical representative,

we pick the alignment that linearly interpolates between changepoints; we write τ̃ to denote

this linearization of an alignment function τ . Linear interpolation [Kress, 1998] is a natural

choice because it represents time evolving at a constant pace between changepoints.

Given a ground-truth alignment τ ∗, we define the temporal error of an alignment τ by

the L1 distance between τ and τ ∗.

35

Definition 3.4. Temporal average error between alignments τ and τ ∗ is given by

TimeError(τ, τ ∗) ≡ 1

S

∫ S

0

|τ̃(s))− τ̃ ∗(s)|ds.

At any point s in the score, the quantity |τ̃(s)) − τ̃ ∗(s)| measures how far the candidate

alignment’s position in the performance, τ̃(s), differs from the ground-truth time in the

performance, τ̃ ∗(s). TimeError computes the average of these errors over score time.

The alignment paths produced by common alignment algorithms, including dynamic

time warping, are not necessarily functions: the alignment path can have vertical jumps,

with one time position in the score corresponding to an interval of time in the performance.

In these cases, we choose to treat the alignments as right-continuous functions, as illustrated

in Figure 3.2. A discontinuous alignment function τ arising from an alignment path with

vertical jumps will map the content of the score at position s to the last performance time

given by the provided alignment.

The TimeError metric alone does not distinguish between different distributions of the

alignment error. For example, one alignment may lag by 10ms for the duration of the

performance, while another may have one measure with large error in an otherwise perfect

alignment. To distinguish between these types of errors, we also consider the standard

deviation of errors over the entire score.

Definition 3.5. Temporal standard deviation (TimeDev) between alignments τ and τ ∗ is

given by

TimeDev(τ, τ ∗) ≡
√

1

S

∫ S

0

(τ̃(s))− τ̃ ∗(s))2 ds.

Because the alignments are linearized, both TimeError and TimeDev can be calculated

in closed form. To avoid extraneous alignment errors involved in guessing the offset time of

the final notes of a performance, we define the end of the score S to be the time of the last

onset in the score.

The TimeError and TimeDev metrics measure temporal differences in the performance

36

with respect to positions in the score. In contrast, audio-to-score alignment are usually

evaluated based on temporal differences in the performance with respect to notes in the

score. These note-based metrics are clearly described by Cont et al. [2007], although similar

metrics appeared in earlier audio-to-score alignment papers [Meron and Hirose, 2001, Orio

and Schwarz, 2001, Shalev-Shwartz et al., 2004]. The most commonly reported metric is the

mean absolute difference between aligned note onsets and ground-truth onsets [Meron and

Hirose, 2001, Orio and Schwarz, 2001, Shalev-Shwartz et al., 2004, Keshet et al., 2007, Ewert

and Müller, 2008, Ewert et al., 2009, Devaney and Ellis, 2009, Devaney, 2014, Niedermayer,

2009, Niedermayer and Widmer, 2010, Lajugie et al., 2016, Kwon et al., 2017, Arzt and

Lattner, 2018]. This metric is a note-based analog to Definition 3.4; given a list of N onsets

s in a score corresponding to onsets p in a performance, we can compute

NoteError(s,p) ≡ 1

N

N∑
i=1

|si − pi|. (3.1)

Some works additionally report mean deviation of note-offsets, and standard deviations of

onset and offset times. The standard deviation of onset times is a note-based analog to

Definition 3.5:

NoteDev(s,p) ≡

√√√√ 1

N

N∑
i=1

(si − pi)
2. (3.2)

Another commonly reported metric is the fraction of onsets that exceed some threshold

deviance from ground-truth, sometimes called the “onset recognition rate” [Cont et al.,

2007, Joder et al., 2011, 2013, Joder and Schuller, 2013, Carabias-Orti et al., 2015].

In light of the discussion in Section 3.1.1, there is an evident mismatch between the

concept of a temporal alignment and these note-based evaluation metrics. Indeed, we argue

that these note-based metrics have pushed researchers to overly focus on the note-based

alignment problem: the flexibility to adjust the onset times of individual notes allows note-

based alignment algorithms to easily outperform temporal alignment algorithms when we

measure them using note-based metrics. Even Ewert’s work [Ewert and Müller, 2008, Ewert

37

et al., 2009], which clearly states its intent to construct temporal alignments, evaluates using

the note-based metrics.

3.1.3 Related Work on Evaluating Alignments

A common way to evaluate alignments is to construct a synthetic dataset using a synthesizer

[Meron and Hirose, 2001, Orio and Schwarz, 2001, Hu et al., 2003, Maezawa and Okuno,

2015, Lajugie et al., 2016]. This approach is convenient, because the deterministic nature

of a synthesizer gives a direct ground-truth alignment between a score and its synthesized

performances. But results on synthesized performances could mislead us if we want to under-

stand how an algorithm will behave on human performances. Furthermore, a score cannot be

directly synthesized in this approach: because synthesizers produce inexpressive, constant-

tempo performances, and aligning to such performances is trivial. The usual solution is to

perturb note onsets and offsets in the score before synthesizing [Ewert et al., 2012, Raffel

and Ellis, 2016], but the artificial nature of these perturbations could also make the results

misleading.

Another approach is to use performance transcripts captured during an acoustic piano

performance using a sensor array that records key and pedal presses [Soulez et al., 2003,

Shalev-Shwartz et al., 2004, Keshet et al., 2007, Niedermayer, 2009, Niedermayer and Wid-

mer, 2010, Joder et al., 2010, 2011, 2013, Joder and Schuller, 2013, Kwon et al., 2017].

Collections of these performances and transcripts have been made widely available in the

MAPS [Emiya et al., 2010] and MAESTRO [Hawthorne et al., 2019] datasets. This cap-

tured data consists of aligned symbolic performances (symbp’s in the language of Section

3.1.2) that, by construction, is aligned to the recorded acoustic performance. Therefore, as

with synthesized datasets, common practice is to randomly adjust the timings of the perfor-

mance transcripts to create a de-aligned “score” for input to the alignment algorithm. These

adjusted transcripts are unlikely to look anything like actual scores, which casts doubt on

resulting alignment evaluations.

Finally there is the labor-intensive approach of gathering scores, corresponding perfor-

38

mances, and manually annotating ground-truth alignments between these pairs. This ap-

proach was taken for the Bach10 dataset [Duan et al., 2010]. Other datasets have been

constructed this way, and are used for the MIREX Real-time Audio to Score Alignment task

[Miron et al., 2014, Arzt and Lattner, 2018], but these datasets are not public. This secrecy

is understandable, because the effort required to create this data means the datasets are

most valuable as privately-held test sets for use in competitions. The high cost of obtaining

alignment labels through manual annotation greatly limits the scale of these datasets: the

Bach10 dataset consists of 10 short recordings of Bach Chorales, totaling 5.5 minutes of mu-

sic. Larger datasets are desirable, particularly if we anticipate the development of alignment

algorithms based on machine learning that require training data.

3.1.4 A Dataset of Ground-Truth Alignments

To evaluate alignment algorithms using the metrics introduced in Section 3.1.2 requires a

dataset consisting of:

1. Musical scores in a symbolic digital format.

2. Relatively faithful performances of these scores.

3. Ground-truth alignment annotations.

We will now introduce a dataset that satisfies these requirements, derived from the public

KernScores [Sapp, 2005] and MAESTRO [Hawthorne et al., 2019] datasets. The chief tech-

nical difficulty in constructing this dataset involves constructing the ground-truth alignment

annotations; the key insight is that, while constructing a temporal alignment between a

score and an acoustic performance is difficult, aligning a score to a symbolic performance

transcript is much easier.1

1For this reason, works that study score-to-MIDI alignment problem focus on note alignments, which
present a challenge even in the symbolic setting [Nakamura et al., 2017].

39
P
it
c
h

Pianoroll performance (Disklavier digital recording)

P
it
c
h

Performance-aligned score

Time

P
it
c
h

Diff between the performance and the performance-aligned score

Visualizing the ground-truth alignment between performance and score

Figure 3.4: To understand the behavior of the ground-truth alignments, we can visually com-
pare the piano-roll performance (top) captured by the Yamaha Disklavier to the performance-
aligned score created by warping the score according to the ground-truth alignment (mid-
dle). In the comparison plot (bottom) we use red to identify notes that are indicated by the
performance-aligned score but not performed and yellow to identify notes that are performed
but not indicated by the performance-aligned score. This example visualizes the beginning
of a performance of the Bach’s Prelude and Fugue in G-sharp minor (BWV 863).

We construct a dataset of ground-truth alignments by cross-referencing a subset of the

KernScores collection [Sapp, 2005] of musical scores with a subset of the MAESTRO v2.0.0

dataset [Hawthorne et al., 2019] of piano performances and transcripts. This subset consists

of 193 performances, with a total of 444 minutes of audio. The chief technical difficulty in

constructing a dataset involves constructing the ground-truth alignment annotations; the

key insight to overcoming this is that, while constructing a temporal alignment between a

score and an acoustic performance is challenging, aligning a score to a symbolic performance

transcript is relatively straightforward [Nakamura et al., 2017].

40

In order to quantify an approximation of the equality in Definition 3.3, we must define a

metric on the space of symbolic performances. We propose using the L1 distance.

Definition 3.6. Given two symbolic performances sp1 and sp2 of duration T , the L1 distance

between them is

d1(sp1, sp2) =
1

T

∫ T

0

‖sp1(t)− sp2(t)‖1 dt.

Intuitively, ‖sp1(t) − sp2(t)‖1 counts the number of differences between sp1 and sp2 at an

instant in time t, and the integral computes the cumulative average difference. Finding τ

that minimizes d1(pscoreτ , transcript), approximating the equality in Definition 3.3, can

be achieved by classical dynamic time warping in O(ST) time and space [Sakoe and Chiba,

1978], where S is the length of the score and T is the length of the performance.

We define the best approximation to the ideal alignment given by Definition 3.3 as the

solution to the following regularized optimization problem:

minimize
τ :[0,S]→[0,T]

d1(pscoreτ , transcript) + λR(τ),

subject to τ(s1) ≤ τ(s2) if s1 < s2.
(3.3)

The constraints force τ to satisfy the definition of an alignment (Definition 3.1). The distance

term d1 forces τ to approximate the equality in Definition 3.3, and can be interpreted as

a measure of compatibility of the alignment τ with the performance. The term λR(τ)

regularizes the optimization towards a uniform tempo, and can be interpreted as a measure

of compatibility of τ with the score.

Let ρ(τ) be the mean inverse-tempo of τ (measured in seconds per beat). We use the

variance of the inverse-tempo, R(τ), to regularize τ towards its mean tempo:

R(τ) ≡ 1

S

∫ S

0

(
dτ(s)

ds
− ρ(τ)

)2

ds. (3.4)

41

Algorithm 1: Tempo-Regularized Dynamic Time Warping (The Forward Pass)

Input: score, pscore, ds, λ ∈ R

timings← changepoints(score) {timings ∈ Rn
+}

m← int(length(pscore)/ds)

prior← length(pscore)/timings[n− 1]

Initialize costlocal ← 0 {costlocal ∈ Rn×m}
for j = 0 to n− 1 do {Precompute the local cost of aligning scores with audiot.}

for k = 0 to m− 1 do

costlocal ← ‖score(timings[j])− pscore(k × ds)‖1

end for

end for

Initialize costglobal ←∞, costincr ← 0 {costglobal ∈ Rn×m, costincr ∈ R}
for k = 0 to m− 1 do {The base case (j = 0)}

tempo← (k × ds)/timings[0]

R← λ× (tempo− prior)2

costincr ← costincr + costlocal[0, k]

costglobal[0, k]← costincr × ds+R

end for

Initialize costglobal[0, 0]← 0

for j = 1 to n− 1 do {Calculate the local tempo-regularized cost matrix.}
for k = 1 to m− 1 do

Initialize costincr ← 0 {costincr ∈ R}
for m = k + 1 to 0 do

tempo← ((k −m)× ds)/timings[j]

R← λ× (tempo− prior)2

costglobal[j, k]← min{costglobal[j, k], costglobal[j − 1,m] + costincr × ds+R}
costincr ← costincr + costlocal[j,m]

end for

end for

end for

Return: costglobal

42

We can write the mean inverse-tempo of an alignment as

ρ(τ) ≡ 1

S

∫ S

0

dτ(s)

ds
ds =

τ(S)− τ(0)

S
=
T

S
. (3.5)

Crucially, the mean inverse-tempo is independent of the path τ , which enables us to write a

dynamic program–analogous to dynamic time warping–to compute the minimization problem

Equation 3.3 in O(ST 2) time using O(ST) space. An forward-backward algorithm that

achieves this complexity is presented in Algorithms 1 and 2. The results of this algorithm

are visualized for a specific paired score and performance in Figure 3.4.

Like the dynamic time warping algorithm, tempo-regularized dynamic time warping pro-

ceeds in two phases: the “forward” pass, in which we compute a cost matrx costglobal ∈ Rn×m

of reaching each possible state (i, j) via alignment, and a “backward” pass in, in which we

trace the minimum-cost path back through the cost matrix. The crucial distinction from

classic dynamic time warping is the introduction of a tempo-regularization term R. Instead of

considering only three possible advancements from state (i, j) to states (i+1, j), (i+1, j+1),

or (i, j + 1), we consider all advancements from state (i, j) to state (i + 1, j + k) for each

k > 0, penalizing the cost of moving to state (i+1, j+k) by the instantaneous tempo implied

by making the move from state (i, j) to state (i + 1, j + k). Considering advancement to

each state (i+ 1, j+k) results in an O(ST 2) time complexity for tempo-regularized dynamic

time-warping, in contrast to the O(ST) time complexity of classic dynamic time warping.

Both tempo-regularized dynamic time warping and classic dynamic time warping require

O(ST) space.

The dataset introduced in this chapter, along with code for evaluating alignments, is

available on GitHub.2 We also provide the code for generating the dataset, including an

implementation of the tempo regularization algorithm. Tempo regularization can be seen as

a principled alternative to gully or penalty methods [Raffel and Ellis, 2016] and could be of

general interest as a method for regularizing alignments. Finally, while we constructed this

2https://github.com/jthickstun/alignment-eval

https://github.com/jthickstun/alignment-eval

43

Algorithm 2: Tempo-Regularized Dynamic Time Warping (The Backward Pass)

Input: score, pscore, costglobal ∈ Rn×m, ds, λ ∈ R

timings← changepoints(score) {timings ∈ Rn
+}

m← int(length(pscore)/ds)

prior← length(pscore)/timings[n− 1]

k ← m− 1

Initialize path← list()

for j = n− 1 to 1 do {Calculate the min-cost path through the global cost matrix}
costincr ← 0

for m = k + 1 to 0 do

tempo = ((k −m)× ds)/timings[j]

R← λ× (tempo− prior)2

if costglobal[j, k] = costglobal[j − 1,m] + costincr +R then

Append (j, k) to path

k ← m

break {Found the match}
end if

costincr ← costincr + ‖score(timings[j])− pscore(m× ds)‖1

end for

end for

Return: path

dataset for the purpose of evaluating alignments, it could be repurposed for other tasks that

require high-quality alignments between performances and scores.

In Section 3.2, we will immediately put this dataset to work to evaluate the alignment

algorithm used to construct MusicNet. This algorithm is a variant of the same dynamic time

warping techniques used in this section. But whereas discrete sequences can be robustly

aligned using a simple local similarity metric (e.g., the L1 distance proposed in Definition 3.6)

44

designing a cost function for comparing the local content of a score with corresponding local

content in an audio recording is considerably more nuanced. As we will see in Section 3.2.3,

the accuracy of an audio-to-score alignment algorithm can be quite sensitive to the chosen

cost function. The dataset constructed here can help us to understand the effectiveness of

different cost functions.

3.2 The MusicNet Dataset

The prominent success of deep learning has popularized the end-to-end learning paradigm for

supervised classification tasks [Russakovsky et al., 2015]. This approach depends upon large

quantities of labeled training data. Many researchers have proposed supervised methods for

music transcription that use synthesized training data, including recent MIREX participants

[Troxel, 2016, Marolt, 2004, Mita et al., 2017]. While synthesized recordings provide an

effectively infinite supply of labeled data, we will see strong evidence in Section 3.3 that

models trained on synthetic data do not generalize well to human recordings.

In contrast to, e.g., the vision domain, there has been a notable historical absence of large-

scale datasets for music information retrieval tasks. This lack of data is partially attributable

to lack of funding for music research programs, and also domain-specific licensing issues

surrounding the copyright and distribution of datasets containing music. The situation has

prompted researchers to issue the following call to action: “Deep architectures often require

a large amount of labeled data for supervised training, a luxury music informatics has never

really enjoyed. Given the proven success of supervised methods, MIR would likely benefit

a good deal from a concentrated effort in the curation of sharable data in a sustainable

manner” [Humphrey et al., 2012].

In this section, we introduce the MusicNet dataset: a freely-licensed, public, curated

collection of classical music recordings and scores.3 The dataset consists of 34 hours of

human-verified aligned recordings, containing a total of 1, 299, 329 individual labels on seg-

3https://zenodo.org/record/5120004.

https://zenodo.org/record/5120004

45

MusicNet

Minutes Labels Recordings Error Rate

2,045 1,089,540 330 4.0%

Ensemble Minutes Labels

Solo Piano 917 435,155
String Quartet 405 220,317
Accompanied Violin 148 97,640
Piano Quartet 73 60,362
Accompanied Cello 63 37,550
String Sextet 48 32,178
Piano Trio 46 28,872
Piano Quintet 25 27,545
Wind Octet 36 26,166
Wind Quintet 43 24,820
Horn Piano Trio 30 18,797
Clarinet-Cello-Piano Trio 25 13,447
Pairs Clarinet-Horn-Bassoon 24 11,972
Clarinet Quintet 26 11,161
Solo Cello 49 10,876
Accompanied Clarinet 20 10,049
Solo Violin 30 8,837
Violin and Harpsichord 16 7,469
Viola Quintet 15 4,113
Solo Flute 8 2,214

Composer Minutes Labels

Beethoven 1,085 566,159
Schubert 253 146,576
Brahms 192 131,899
Mozart 156 75,930
Bach 184 62,776
Dvorak 56 31,605
Cambini 43 24,820
Faure 33 22,349
Ravel 27 21,134
Haydn 15 6,292

Instrument Minutes Labels

Piano 1,346 633,598
Violin 874 200,467
Cello 800 91,109
Viola 621 89,288
Clarinet 173 24,150
Bassoon 102 14,747
Horn 132 11,327
Oboe 66 8,624
Flute 69 8,310
Harpsichord 16 4,914
String Bass 38 3,006

Piano Violin Cello Viola Clarinet Bassoon Horn Oboe Flute Bass Harpsichord

Pitch
Classes

83 50 45 45 41 36 40 28 37 43 51

Table 3.1: Summary statistics of the MusicNet dataset. See Section 3.2.2 for a description
of the construction of MusicNet and the alignment algorithm used in the labelling process.
Section 3.2.4 describes the methodology used to compute the error rate of the labelling
process. The statistics reported in this table differ slightly from those reported in the original
publication of MusicNet [Thickstun et al., 2017] due to a tabulation error in the earlier work.

ments of these recordings. Table 3.1 summarizes statistics of MusicNet. The existence of

MusicNet is made possible by licensing initiatives of the European Archive, the Isabella

46

Stewart Gardner Museum, Musopen, and various individual artists.

In Section 3.2.1 we discuss other music transcription datasets. In Section 3.2.2, we in-

troduce the alignment algorithm used to construct the MusicNet dataset. Because there are

no ground-truth alignments for the MusicNet recordings, the labels constructed via align-

ment must somehow be validated. We address this question from three perspectives. First,

in Section 3.2.3 we investigate the effectiveness of several alignment algorithms using the

quantitative methodology and dataset introduced in Section 3.1. Second, in Section 3.2.4 we

investigate the quality of the resulting alignments produced via application of an alignment

algorithm to the MusicNet scores and recordings. In a sense, this second question is the only

important one: so long as the MusicNet alignments are determined to be substantially cor-

rect, then the effectiveness of the algorithm used to produce them is mostly irrelevant. But

because human judgement is imperfect, both perspectives may be helpful for establishing

confidence in the quality of the MusicNet alignments. Finally there is third, operational per-

spective on the validity of the MusicNet alignments: are they useful as labels for supervising

the frame-based music transcription task? We will see in Section 3.3 that training models

using the MusicNet labels has proven remarkably effective.

3.2.1 Related Music Transcription Datasets

Aligned training data is typically obtained in one of three ways. First is the use of synthetic

performances, derived from a dataset of digital music scores using a commercial music syn-

thesizer, was pioneered by Poliner and Ellis [2007]. This approach is appealing because we

can generate vast quantities of precisely-aligned training data, at the cost of a significant

distributional shift between the training and testing data. The second approach to dataset

construction is by performing music on instruments wired with sensors that record a MIDI

transcription (a pscore) of the performance as the instrument is played. This approach is

largely limited to piano music and specifically the Yamaha Disklavier piano, which is wired

to record MIDI, leading to the creation of the MAPS [Emiya et al., 2010] and MAESTRO

[Hawthorne et al., 2019] datasets. While these piano-roll transcripts are precisely time-

47

-

0

+

Beethoven's 'Serioso' String Quartet

0 1 3 5 6 8 10
Time

Violin Viola Cello

Figure 3.5: An example of the MusicNet labels. Top: an audio recording of Beethoven’s
String Quartet No. 11 in F minor (Opus 95, ‘Serioso’). Bottom: a piano-roll aligned to the
audio recording above, i.e., a performance-aligned score (Definition 3.2). The highlighted
notes in the piano-roll indicate the active notes at the time indicated by the red tick-mark
on the audio wave.

aligned to the performance, they are limited to a particular variety of piano. Furthermore,

by directly constructing a pair (pscore, audio), this means of supervision is missing met-

rical and other information needed to construct a score object; the Disklavier datasets are

effective for the frame-based music transcription task but they cannot be directly used to su-

pervise a more general transcription task. The third approach to dataset construction makes

use of an alignment algorithm, warping a musical score score into a pscore corresponding

to a given recorded performance of that score. These alignments can be constructed using an

alignment algorithm, which is the approach taken for to construct the SyncRWC [Goto et al.,

2003] and LakhMIDI [Raffel, 2016] datasets. Alternatively, alignments can be constructed

using information supplied by a human annotator, which is the approach taken with the Su

48

dataset used by MIREX evaluation [Su and Yang, 2015b].

3.2.2 Dataset Construction

The MusicNet labels are constructed from digital MIDI scores, created by enthusiasts and

collected from various archives including the Classical Archives (classicalarchives.com)

Suzuchan’s Classic MIDI (suzumidi.com) and HarfeSoft (harfesoft.de). The methods in

this section exploit side information provided by a commercial music synthesizer to pro-

duce an alignment between a digital score and a corresponding freely-licensed recording. A

recording is labeled with events in the score, associated to times in the performance via the

alignment.

Music-to-score alignment is a long-standing problem in the music research and signal pro-

cessing communities [Raphael, 1999]. Dynamic time warping (DTW) is a classical approach

to this problem. An early use of DTW for music alignment is discussed by Orio and Schwarz

[2001], whereby a recording is aligned to a crude synthesis of its score, designed to capture

some of the structure of an overtone series. The method described in this section aligns

recordings to synthesized performances of scores, using side information from a commercial

synthesizer. Commercial synthesis was first proposed to assist in construction of alignments

by Turetsky and Ellis [2003]. The majority of previous work on alignment focuses on pop

music. This is more challenging than aligning classical music because commercial synthesiz-

ers do a poor job reproducing the wide variety of vocal and instrumental timbers that appear

in modern pop. Furthermore, pop features inharmonic instruments such as drums for which

natural metrics on frequency representations–including `2–are not meaningful. For classical

music to score alignment, a variant of the techniques described by Turetsky and Ellis [2003]

works robustly. This method is described below; we discuss the evaluation of this procedure

and its error rate on MusicNet in the appendix.

In order to align the performance with a score, we will introduce a local similarity metric

costs,t that compares the local content at location s in the score with local content at time t

in the performance. Like in Section 3.1, we say that alignment is good if it minimizes average

classicalarchives.com
suzumidi.com
harfesoft.de

49

0 100 200 300 400 500 600 700 800
frames (recording)

0

100

200

300

400

500

600

fr
a
m
e
s
(s
y
n
th
e
si
s)

0 100 200 300 400 500 600 700 800
frames (recorded performance)

0

50

100

150

200

250

sp
ec

tr
og

ra
m
 b
in
s

Figure 3.6: (Left) Heatmap visualization of local alignment costs between the synthesized
and recorded spectrograms, with the optimal alignment path in red. The block from x = 0
to x = 100 frames corresponds to silence at the beginning of the recorded performance.
The slope of the alignment can be interpreted as an instantaneous tempo ratio between the
recorded and synthesized performances. The curvature in the alignment between x = 100 and
x = 175 corresponds to an extension of the first notes by the performer. (Right) Annotation
of note onsets on the spectrogram of the recorded performance, determined by the alignment
shown on the left.

cost of aligning location in the score with times in the performance. This is comparable to

the comparison metric we defined between pscore’s given by Definition 3.6, replacing the

L1 norm on bit-vectors with a more general pairwise cost costs,t.

Definition 3.7. Given a score score, a corresponding performance audio, the c-distance

between a score and audio under an alignment τ : [0, S)→ [0, T) is given by

dc(score, audio) =
1

T

∫ T

0

costτ−1(t),t (score, audio) dt.

Where the alignment is non-invertible, we can define τ−1(t) ≡ max{s : τ(s) ≤ t}. Discretiz-

ing time in the score and performance into sequences of length n and m respectively, the

minimal cost alignment is given by an optimal solution to the following integer program:

minimize
s∈Zn

n∑
t=1

costst,t(score, audio)

subject to s0 = 0, sn = m, and st1 ≤ st2 if t1 < t2.

(3.6)

50

Dynamic time warping gives an exact solution to the problem in O(mn) time and space

[Müller, 2007].

The success of dynamic time warping crucially depends on the signal provided by the local

comparison metric cost. Unlike in Section 3.1, it is not clear how define a local comparison

between score objects and audio objects. Previous work on audio-to-score alignment can

be broadly categorized into three groups, each of which address this comparison question by

injecting score and audio into a common normed space. We will denote these injections by

maps Ψ and Φ, and write

costs,t(score, audio) = ‖Ψs(score)− Φt(audio)‖. (3.7)

The most popular approach–and the one adopted to construct MusicNet–maps the score

into the space of the performance [Orio and Schwarz, 2001, Turetsky and Ellis, 2003, Soulez

et al., 2003]. An alternative approach maps both the score and performance into some third

space, commonly a chromogram space that collapses a multi-octave frequency domain into a

single 12-tone domain modulo octaves [Dannenberg and Hu, 2003, Izmirli and Dannenberg,

2010, Joder et al., 2013]. Finally, some recent methods consider alignment in score space,

taking Φ to be the identity and learning Ψ [Lajugie et al., 2014, 2016].

With reference to the general cost (3.7), we must specify the feature maps Ψs,Φt, and

the norm ‖ · ‖. We will use the log-spectrograms as features, with a window size of 2048

samples. We use a stride of 512 samples between features. Hence adjacent feature frames

are computed with 75% overlap. For audio sampled at 44.1kHz, this results in a feature

representation with 44, 100/512 ≈ 86 frames per second. A discussion of these parameter

choices can be found in the appendix. The map Φ is computed by a synthetizer: we used

Plogue’s Sforzando sampler together with Garritan’s Personal Orchestra 4 sample library.

For a (pseudo)-metric on spectrograms, we take the L2 norm ‖·‖2 on the low 50 dimensions

of the magnitude spectrum. We can roughly interpret the k’th coordinate of the spectrum as

the energy associated with the frequency k × (22, 050/1024) ≈ k × 22.5Hz, where 22, 050Hz

51

is the Nyquist frequency of a signal sampled at 44.1kHz. The 50 dimension cutoff is chosen

empirically: we observe that the resulting alignments are more accurate using a small number

of low-frequency bins rather than the full magnitude spectrum. One possible explanation for

this observation is that synthesizers do not accurately reproduce the high-frequency features

of a musical instrument; by ignoring the high frequencies, we align on a part of the spectrum

where the synthesis is most accurate. Such cutoffs have been proposed before, but the cutoff

proposed here is aggressive compared to usual settings: for instance, Turetsky and Ellis

[2003] propose cutoffs in the 2.5kHz range. The fundamental frequencies of many notes in

MusicNet are higher than the 50×22.5Hz ≈ 1kHz cutoff. Nevertheless, we find that all notes

align well using only the low-frequency information.

3.2.3 Quantitative Evaluation of Alignment Algorithms

The alignment algorithm introduced in Section 3.2.2 is rather arbitrary, and a reasonable

person would question the choices made in constructing the feature maps Φ and Ψ. In

this section, we consider four variants of dynamic time-warping algorithm, using different

featurizations of the audio:

1. Spectra: (log-)spectrograms.

2. Chroma: (log-)chromagrams [Hu et al., 2003].

3. CQT: constant-Q transforms [Raffel and Ellis, 2016].

4. Truncated: truncated (log-)spectrograms (Section 3.2.2).

We compute features from a synthesized performance of the score, created using PrettyMidi’s

FluidSynth interface [Raffel and Ellis, 2014], with a hop-size of 512 samples (≈ 12ms). We

use librosa’s [McFee et al., 2015b] implementation of dynamic time warping to compute an

alignment between featurizations. For the Constant-Q featurization, we use Raffel and Ellis’s

hyper-parameter settings [Raffel and Ellis, 2016], however we do not apply their gully and

52

Spectra Chroma CQT Truncated

TimeError (Definition 3.4) 37 35 33 35
NoteError (Equation 3.1) 25 26 23 23

TimeDev (Definition 3.5) 114 76 97 111
NoteDev (Equation 3.2) 92 64 66 87

Table 3.2: The average value of each metric across all performances in the dataset. Values are
reported in milliseconds of performance time (lower is better). Spectrogram results exclude
13 outliers with TimeError > 300ms. Truncated spectrogram results exclude 2 outliers with
TimeError > 300ms.

penalty constraints as we found that these degrade results for performances that take a very

different tempo than the corresponding score.

Computing the note-based metrics discussed in Section 3.1.2 requires a correspondence

between notes in the score and notes in the performance. We construct this correspondence

from the ground-truth alignment using a heuristic. For each note in the score, we map its

onset time to a time t in the performance via the ground-truth alignment. The closest note in

the performance transcript with the same pitch is matched to the note in the score. If no note

of the same pitch is found within ±100ms of t, the note in the score is considered unmatched

and excluded from note-based calculations; using the 100ms threshold, we achieve a 96.7%

correspondence between notes on this dataset.

Quantitative results for each featurization of dynamic time warping are summarized in

Table 3.2. We find that the chroma and constant-Q alignments have comparable perfor-

mance. This is consistent with previously reported results on synthetic data [Raffel and

Ellis, 2016]. Spectrogram alignments were prone to catastrophic failure; we removed 13 out-

lier spectrogram alignments from our evaluation, for which TimeError > 300ms. Even on

the remaining 182 performances, the spectrogram alignments are substantially worse than

chroma or constant-Q. The truncated spectrogram features mitigate the extreme failures

seen for for full spectrogram alignment (only truncated spectrogram alignments exhibited

TimeError > 300ms) but the truncated spectrogram still exhibits a higher variance than the

53

Spectra Chroma CQT

TimeError vs. NoteError .94 .93 .87
TimeDev vs. NoteDev .85 .83 .85

Table 3.3: Correlation coefficients between temporal alignment metrics and the analogous
note-based alignment metrics. There is substantial agreement between these two sets of
metrics about whether a performance is well-aligned.

chroma or constant-Q featurizations. We conclude that the truncated features are a reason-

able approach, but chroma or constant-Q would be a better choice for future alignment work.

A visualization of the behavior of each alignment featurization is presented in Figure 3.7

We can also ask how the temporal metrics introduced in Section 3.1.2 compare to the stan-

dard note metrics. Table 3.3 shows that the correlation between the temporal and note-based

metrics is high. This assuages concerns that note-based metrics could be overly sensitive to

regions of a score with a high density of note onsets: rapid processions of short-duration

notes, or regions of high polyphony. While they correlate well, we recommend the new

time-based metrics for the temporal alignment task for two reasons. First, temporal metrics

eliminate the need for the ad-hoc thresholding heuristic used to construct the correspondence

between notes in the score and notes in the performance. Second, the temporal metrics nar-

rowly target the temporal alignment task (see the distinction made between temporal and

note-based alignment that we identified in Section 3.1). This removes the temptation to

make misleading comparisons with results for the note alignment task, or to shift focus to

the note alignment task in order to boost performance on the note-based alignment metrics.

Finally, we are able to gain some insight into the robustness of these results to variations

in the underlying ground truth alignments using the recently introduced ASAP dataset

[Foscarin et al., 2020]. Like the dataset introduced in Section 3.1.4, ASAP leverages the

MAESTRO performance-aligned scores and a score-to-MIDI alignment algorithm to con-

struct a dataset of ground-truth alignments. Whereas we used KernScores as corresponding

scores for for MAESTRO performances, ASAP uses MusicXML scores. And whereas we

54
Pi
tc
h

Spectrogram alignment

Pi
tc
h

Chromagram alignment

Time

Pi
tc
h

CQT alignment

Time

0

5

10

15

20

25

30

35

Pi
tc
h

MusicNet alignment

Difference between the ground truth alignment and various candidate alignments

Figure 3.7: Comparing the results of various candidate alignment algorithms to the ground-
truth alignment. In each case, red is used to identify notes that are indicated by the candidate
alignment algorithm, but not by the ground-truth alignment, and yellow is used to identify
notes that are indicated by the ground-truth alignment, but not by the candidate alignment.
This example visualizes the beginning of a performance of the Bach’s Prelude and Fugue in
G-sharp minor (BWV 863).

used tempo-regularized dynamic time warping to construct ground truth alignments, ASAP

uses a note-based alignment algorithm to align scores with performances followed by a hy-

brid system rules and human annotation to post-process these note-based alignments into

55

0.05

0.10

0.15

0.20

0.05 0.10 0.15 0.20
Time Metric

N
ot

e
M

et
ric

CQT Error, Correlation 0.87

0.05

0.10

0.15

0.20

0.05 0.10 0.15 0.20
Time Metric

N
ot

e
M

et
ric

Chroma Error, Correlation 0.93

0.00

0.05

0.10

0.15

0.20

0.05 0.10 0.15 0.20
Time Metric

N
ot

e
M

et
ric

Spectra Error, Correlation 0.94

0.0

0.2

0.4

0.6

0.0 0.2 0.4 0.6 0.8
Time Metric

N
ot

e
M

et
ric

CQT Standard Deviation, Correlation 0.85

0.0

0.1

0.2

0.3

0.4

0.0 0.1 0.2 0.3 0.4
Time Metric

N
ot

e
M

et
ric

Chroma Standard Deviation, Correlation 0.83

0.0

0.1

0.2

0.3

0.4

0.0 0.1 0.2 0.3 0.4
Time Metric

N
ot

e
M

et
ric

Spectra Standard Deviation, Correlation 0.85

Figure 3.8: A visual illustration of correlation between the new temporal metrics TimeError
and TimeDev introduced in Section 3.1.2 with the old note-based metrics NoteError and
NoteDev. Each point is one of the 193 performances in the dataset described in Section
3.1.4. For spectrogram results, 13 outliers with TimeError > 300ms are omitted.

temporal alignments. There is considerable overlap between the Bach Preludes and Fugues

used to construct these two datasets, and so we are able to repeat our analysis of audio-

to-score alignment algorithms using the Bach Preludes and Fugues from the ASAP dataset

56

Spectra Chroma CQT

TimeError (Definition 3.4) 39 36 31
NoteError (Equation 3.1) 36 33 27

TimeDev (Definition 3.5) 114 69 68
NoteDev (Equation 3.2) 115 67 61

Table 3.4: The average value of each metric across 151 Bach Prelude and Fugue performances
in the ASAP dataset of ground truth alignments [Foscarin et al., 2020]. Values are reported
in milliseconds of performance time (lower is better). Chroma and Constant-Q results ex-
clude 6 outliers with TimeError > 300ms, and Spectrogram results exclude 15 outliers with
TimeError > 300ms.

Spectra Chroma CQT

TimeError vs. NoteError .97 .97 .93
TimeDev vs. NoteDev .98 .96 .90

Table 3.5: Correlation coefficients between temporal alignment metrics and the analogous
note-based alignment metrics using the ASAP dataset of ground truth alignments [Foscarin
et al., 2020].

to better understand the the robustness of our findings to variations in the construction of

ground-truth alignments.

Results for the ASAP dataset are presented in Tables 3.4 and 3.5 (compare to Tables

3.2 and 3.3). We find that results using the ASAP alignments as ground-truth are largely

consistent with findings using the dataset constructed in Section 3.1.4: spectrogram align-

ments are worst, chroma and cqt alignments are comparable, and the new temporal metrics

correlate strongly with older note-based metrics. Because the procedure for constructing

the ASAP dataset alignments is substantially different than the approach taken in Section

3.1.4, we take this as evidence that our evaluation is indeed robust to minor variations in

the alignments used as ground-truth.

57

3.2.4 Validating the MusicNet Labels

We validated the accuracy of the MusicNet alignments using a human listening test. We

created synthesized audio renditions of each aligned score-performance pair by mixing a

short sine wave into the performance at the onset of each note indicated by the alignment,

with a frequency indicated by the score. We can listen to this mix and, if the alignment is

correct, the sine tones will exactly overlay the onsets of notes in the original performance; if

the alignment is incorrect, the mix will sound arhythmic and dissonant. Two of the authors

of MusicNet (John Thickstun and Zaid Harchaoui) listened to sections of each recording in

the aligned dataset: the beginning, several random samples of middle, and the end. Both

evaluators are trained classical musicians. Recordings that exhibited substantial audible

inaccuracies using this methodology were rejected from the final MusicNet dataset.

Among rejected alignments, the primary cause of failure was content differences between

the score and the corresponding recording. The most common source of content differences

between otherwise correctly paired scores and performances is musical repeats. Classical

music often contains markings that indicate a section should be repeated a second time; in

classical music performance culture it is often acceptable to ignore these directions, resulting

in a content difference between the score and the recording. When the score does not

indicate a repeat that occurs in the performance, the alignment typically warps over the

entire repeated section, with correct alignments before and after. When the score indicates a

repeat that was not taken in the performance, the alignment typically compresses it into very

short segment, with correct alignments on either side. We rejected alignments exhibiting

either of these failure modes from MusicNet. While there are alignment algorithms that

can accommodate repeated structures [Fremerey et al., 2010], we opted to use the simpler

alignment algorithm described in Section 3.2.2, at the cost of a rejecting some data that

could otherwise have been incorporated into MusicNet.

From the aligned performances that we deemed sufficiently accurate to admit to the

dataset, we randomly sampled 30 clips for more careful annotation and analysis. We weighted

58

the sample to cover a wide range of recordings with various instruments, ensemble sizes, and

durations. For each sampled performance, we randomly selected a 30 second clip. Using

software transforms, it is possible to slow a recording down to approximately 1/4 speed.

Two of the clips were too richly structured and fast to precisely analyze (slowing the signal

down any further introduces artifacts that make the signal difficult to interpret). Even in

these two rejected samples, the alignments sounded substantially correct. For the other 28

clips, we carefully analyzed the aligned performance mix and annotated every alignment

error. The two authors independently checked for errors and found our analyses were nearly

identical. In the few cases of disagreement, we used the more pessimistic author’s analysis.

Across this sample set, we identified a 4.0% error rate.

We did not identify every type of error. Mistaken note onsets are more easily identified

than mistaken offsets. Typically the release of one note coincides with the onset of a new

note, which implicitly verifies the release. However, release times at the ends of phrases may

be less accurate; these inaccuracies would not be covered by our error analysis. We were

also likely to miss performance mistakes that maintain the meter of the performance, but for

professional recordings such mistakes are rare. For stringed instruments, chords consisting

of more than two notes are rolled ; i.e., they are performed serially from the lowest to the

highest note. The temporal alignment protocol described in Section 3.2.2 cannot separate

notes that are notated simultaneously in the score (see the distinction between a temporal

alignment and a note-based alignment in Section 3.1); a rolled chord is labeled with a single

starting time, usually the beginning of the first note in the roll. Therefore, there is some

time period at the beginning of a roll where the top notes of the chord are labeled but have

not yet occurred in the performance. There are reasonable interpretations of labeling under

which these labels would be judged incorrect. On the other hand, if the labels are used to

supervise a transcription that notates these onsets concurrently, then ours may be the most

desirable labeling.

We can also qualitatively characterize the types of errors we observed. The most common

types of errors are anticipations and delays: a single, or small sequence of labels is aligned

59

to a slightly early or late location in the time series. Another common source of error is

missing ornaments and trills: these are short flourishes in a performance are sometimes not

annotated in our score data, which results in a missing annotation in the alignment. Finally,

there are rare performance errors in the audio recordings and editing errors in the scores.

3.2.5 Alignment Parameter Robustness

The definitions of audio featurization and the alignment cost function were contingent on

several parameter choices. These choices were optimized by systematic exploration of the

parameter space. We investigated what happens as we vary each parameter and made

the choices that gave the best results in our listening tests. Fine-tuning these parameters

yields only marginal gains. We find that the quality of alignments improves uniformly with

the quality of synthesis. The time-resolution of labels improves uniformly as the stride

parameter decreases; minimization of stride is limited by system memory constraints. The

other parameters are governed by a tradeoff curve; the optimal choice is determined by

balancing desirable outcomes. The Fourier window size is a classic tradeoff between time

and frequency resolution. The L2 norm can be understood as a tradeoff between the extremes

of L1 and L∞. The behavior of the L1 norm seems too sensitive to a preponderance of errors

due to synthesis quality; these errors add up and overwhelm the signal. On the other hand,

the L∞ norm ignores too much of the signal in the spectrogram. The spectrogram cutoff

discussed in Section 3.2.2 is also a tradeoff between accounting for imperfection and variance

in the synthesis, and making maximal use of this side-information.

3.3 Music Transcription

There is a large and growing collection of human recordings annotated with labels suitable

for supervision of frame-based music transcription models: SyncRWC [Goto et al., 2003],

MAPS [Emiya et al., 2010], LakhMIDI [Raffel, 2016], MAESTRO [Hawthorne et al., 2019],

as well as the MusicNet dataset presented in Section 3.2. This motivates us to explore models

that can make effective use of this data. While the amount of available data is substantial,

60

it is not infinite. Furthermore, frames of music sampled from an audio recording are more

highly correlated than, for example, a pair of images from ImageNet. We therefore focus our

attention on models and data augmentation techniques that incorporate prior knowledge of

invariances in the problem domain to efficiently use the data.

Recent work shows that end-to-end architectures construct a first-layer feature represen-

tation that is qualitatively comparable to classical frequency filterbank transforms such as

the STFT or CQT [Dieleman and Schrauwen, 2014]. This leads us to reconsider hand-crafted

filterbanks as a low-level representation of musical audio. By replacing the first layer of an

end-to-end network with a fixed filterbank transform, we dramatically reduce the number

of model parameters and the corresponding risk of overfitting. A filterbank representation

has a further advantage over end-to-end learning: its channels are ordered from low to high

frequency. This order introduces a topology on the channel axis (the frequency domain)

that motivates a convolutional architecture, analogous to how the Euclidean structure of R2

motivates the classic convolutional network used in computer vision. Constructing a con-

volutional network on the channels of a filterbank representation yields performance gains

from parameter sharing that are not obviously replicable in an end-to-end architecture.

We will now consider a variety of neural architectures as models for frame-based music

transcription. In Section 3.3.1 we discuss related work on music transcription. We proceed

to formalize the frame-based music transcription task in Section 3.3.2 . In Sections 3.3.3 and

3.3.4 we discuss models for the transcription task that combine classical signal processing

techniques with modern neural network architectures, culminating in a frequency-invariant

architecture proposed in Section 3.3.5. We present empirical results for these models in

Section 3.3.6, trained on the MusicNet dataset evaluated on the MusicNet and Su test sets.

Code for all the experiments presented in this section is available on GitHub.4

4https://github.com/jthickstun/thickstun2018invariances/

https://github.com/jthickstun/thickstun2018invariances/

61

3.3.1 Related Work on Transcription

Because access to large aligned datasets was historically limited, older work on music tran-

scription is largely unsupervised; a good survey of older work can be found in Benetos et al.

[2013]. To the best of our knowledge, music transcription was first considered as a statisti-

cal, supervised learning problem by Poliner and Ellis [2007] using labels obtained from MIDI

files to train an SVM on the spectrograms of synthesized recordings of these MIDIs. Sub-

sequent work on supervised transcription improves upon these results in two directions: use

of more sophisticated models, and construction of datasets of recorded human performances

(as opposed to synthesized data).

The development of models for music transcription conceptually factors into two sub-

problems: acoustic modeling and time series prediction. We focus on the acoustic modeling

problem, as introduced by Poliner and Ellis [2007], making a strong assumption of condi-

tional independence on the prediction of each note at each time step. Recent developments

in this area model the acoustics using deep neural networks [Nam et al., 2011, Trabelsi et al.,

2018] or convolutional neural networks [Kelz et al., 2016, Bittner et al., 2017, Pons and

Serra, 2017]. Some recent work explores hybrid models that combine a deep or convolutional

acoustic model with a recurrent time-series model to jointly estimate transcriptions [Sigtia

et al., 2015, 2016].

Choosing an appropriate model for a supervised learning problem requires consideration

of both the structure of the problem and the available data. A biased model can compensate

for a smaller dataset at the risk of making overly powerful assumptions about the problem

structure. The frequency-invariance ideas presented in Section 3.3.5 are anticipated by Sig-

tia et al. [2016], Bittner et al. [2017], and Pons and Serra [2017]. Our contribution is to

demonstrate that this class of models represents a good bias-variance tradeoff for current

datasets. Our dataset augmentation techniques are inspired by analogous transformations

introduced by the vision community for image classification [Simard et al., 2003, Krizhevsky

et al., 2012] and extensions of these ideas to audio [McFee et al., 2015a].

62

Subsequent to the work presented in this section, we observe several emerging trends.

The release of the large-scale MAESTRO piano dataset [Hawthorne et al., 2019] has lead to

strong empirical transcription results of piano music recorded in a controlled studio environ-

ment, supporting the argument that the primary bottleneck to general-purpose transcription

is access to large quantities of labeled data. Ongoing work uses MusicNet to study the per-

formance of transcription models for specific instrument types [Pedersoli et al., 2020], and

explore uses of the dataset beyond frame-based transcription, including note-based tran-

scription [Cheuk et al., 2020b] and instrument recognition tasks [Hung et al., 2019]. Finally,

there is recent work toward eliminating independence assumptions between note predictions

for piano-roll transcription by post-processing a predicted piano-roll using a language model

[Ycart et al., 2019a] or GAN [Ycart et al., 2019b] as a prior.

3.3.2 A Frame-Based Transcription Task

Given an audio frame of length 2w, x = audio([t−w, t+w]) ∈ [−1, 1]44,100×2w = X , we seek

to predict the notes present at the midpoint of audio(t), given by an aligned piano-roll score,

which we encode as a binary label vector y = pscoreτ (t) ∈ {0, 1}N (Definition 3.2). The

temporal window [t−w, t+w] should be thought of as a local context for making predictions

about the instantaneous content of the audio signal at time t. We model this prediction task

by learning a feature map fθ : X → H (with learned parameters θ) to a latent representation

space H, along with a multivariate linear regression to estimate ŷ = fθ(x) given the learned

representation fθ(x). We supervise learning of the parameters θ by minimizing the mean-

squared error of our predictions ŷ over a training dataset Xtrain:

θ∗ = min
θ

∑
x∈Xtrain

1
2
‖y− fθ(x)‖2. (3.8)

We preprocess x by the normalization x 7→ x/‖x‖2; this can be interpreted physically as

normalizing the audible volume of each frame. The first layer of every network we consider

is a strided convolution with a 4, 096-sample receptive field and a 512-sample stride. We use

63

a frame length of w = 16, 384 samples, resulting in 25 = (16, 384 − 4, 096)/512 regions per

frame. The 16, 384-sample frame size reflects a tradeoff between a shorter frame, which could

miss important context for the classification task, and a longer frame, which has diminishing

returns at computational cost. Very long frames grow the number of parameters in the

model, creating additional risk of overfitting. The 512-sample stride is subject to a similar

tradeoff.

We augment our training dataset by stretching or shrinking our input audio with linear

interpolation. This corresponds to a pitch-shift in the frequency domain. For small shifts

(±5 semitones or less) the transformed audio sounds natural to the human ear. Randomly

shifting each data points in a minibatch by an integral number of semitones in the range

[−5, 5] augments the dataset by an order of magnitude. The translational nature of this

augmentation reinforces the architectural structure of the frequency-invariant networks. In

addition to an integral semitone shift, we also apply a continuous shift to each data point

in the range [−.1, .1]. This makes the models more robust to tuning variation between

recordings.

3.3.3 Learning from Spectrograms

The simplest model we consider is a two layer neural network. For each region of the layer-

one convolution we construct a filterbank representation of the input, creating a spectrogram

representation H at layer two. We perform linear classification on logH: the pointwise

logarithm of the spectrogram. We consider several variants on the choice of filterbank below,

as well as an end-to-end architecture where the filters are learned from data.

When we parameterize a network, we must choose the width of the set of weights in

the bottom layer. This width is called the receptive field in the vision community; in the

music community it is called the window size. Traditional frequency analyses, including

spectrograms, are highly sensitive to the window size. Windows must be long enough to

capture relevant information, but not so long that they lose temporal resolution; this is an

instance of the classical time-frequency tradeoff [Heisenberg, 1927]. Furthermore, windowed

64

frequency analysis is subject to boundary effects, known as spectral leakage. Classical signal

processing attempts to dampen these effects with predefined window functions, which apply

a mask that attenuates the signal at the boundaries [Rabiner and Schafer, 2007].

We consider several variants on the choice of filterbank below, as well as an end-to-end

architecture where the filters are learned from data.

(Short-time Fourier transform) This is the classical filterbank consisting of Fourier

coefficient magnitudes. We truncate the magnitude spectrum at 6kHz because we find that

frequencies above this cutoff do not meaningfully improve classification accuracy.

(Log-spaced filterbank) This filterbank consists of 512 sine and cosine filters with log-

spaced frequencies ranging from 50Hz to 6kHz. For each filter pair wk,sin,wk,cos, we compute

inner products with the input region xt ∈ [−1, 1]4,096 and sum the square of these values,

analogous to the STFT:

filterk = (wT
k,sinxt)

2 + (wT
k,cosxt)

2. (3.9)

(Windowed filterbank) Here we apply the cosine window 1 − cos(t) to each filter in

our filterbank. This combats the spectral leakage phenomenon caused by boundary effects

introduced by the finite-window frequency analysis [Rabiner and Schafer, 2007]. We will

examine the effects of windowing on both the STFT and log-spaced filterbank.

(Learned filterbank) In this architecture, the filter coefficients wk are learned as pa-

rameters in the classifier optimization (see Section 3.3.4).

3.3.4 Learning Features of Music from Scratch

Spectrogram representations are closely related to a two-layer ReLU network. If x =

(x1, . . . , xt) denotes a segment of an audio signal of length t then we can define

Speck(x) ≡
∣∣∣∣∣
t−1∑
s=0

e−2πiks/txs

∣∣∣∣∣
2

=

(
t−1∑
s=0

cos(2πks/t)xs

)2

+

(
t−1∑
s=0

sin(2πks/t)xs

)2

. (3.10)

These features are not precisely learnable by a two-layer ReLU network. But recall that

65

Figure 3.9: (Left) Features learned by a 2-layer ReLU network trained on small monophonic
subset of MusicNet. (Right) Features learned by the same network, trained on the full
MusicNet dataset.

|x| = max(0, x) + max(0,−x) and if we take weight vectors u,v ∈ RT with us = cos(2πks/t)

and vs = sin(2πks/t) then the ReLU network can learn

fk,cos(x) + fk,sin(x) ≡ |uTx|+ |vTx| =
∣∣∣∣∣
t−1∑
s=0

cos(2πks/t)xs

∣∣∣∣∣+

∣∣∣∣∣
t−1∑
s=0

sin(2πks/t)xs

∣∣∣∣∣ . (3.11)

We call this family of features a ReLUgram and observe that it has a similar form to the

spectrogram; we merely replace the x 7→ x2 non-linearity of the spectrogram with x 7→ |x|.

The ReLUgram features achieve similar performance to spectrograms on the transcrip-

tion task (see Section 3.3.6) and the weights of the learned features visually approximate a

filterbank of sinusoids: see Figure 3.9. Moreover, the ReLUgram model learns window func-

tions: the magnitude of the learned weights attenuates at the boundaries. If we parameterize

this model with a large window size, the model learns that distant information is irrelevant

to local prediction. We therefore focus on two window sizes: 2048 samples, which captures

the local content of the signal, and 16,384 samples, which is sufficient to capture almost all

relevant context.

The size of MusicNet is essential to achieving the results in Figure 3.9. In Figure 3.9 (Left)

we optimize a two-layer ReLU network on a small subset of MusicNet consisting of 65, 000

monophonic data points. While these features do exhibit dominant frequencies, the signal is

66

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
frequency (kHz)

0.0

10.0

20.0

30.0

40.0

50.0

60.0

no
te
s
(th

ou
sa

nd
s)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
frequency (kHz)

0
5

10
15
20
25
30
35
40

no
de

s

Figure 3.10: (Left) The frequency distribution of notes in MusicNet. (Right) The frequency
distribution of learned nodes in a 500-node, two-layer ReLU network.

quite noisy. Comparable noisy frequency selective features were recovered by Dieleman and

Schrauwen [2014]; see their Figure 3. We can recover clean features on a small dataset using

regularization, e.g., a heavy L2 penalty term, but this destroys classification performance;

regularizing with dropout poses a similar tradeoff. By contrast, Figure 3.9 (Right) shows

weights learned by an unregularized two-layer network trained on the full MusicNet dataset.

The models described in this paper do not overfit to MusicNet and are trained without L2

regularization.

A spectrogram of length n is computed from 2n samples, so a linear 1024-point spectro-

gram model is directly comparable to a multi-layer perceptron with 2048 raw samples. In

Section 3.3.6, we will see that learned features modestly outperform spectrograms for compa-

rable window sizes. The discussion of windowing partially explains this. Figure 3.10 suggests

a second reason. Equation 3.10 shows that the spectrogram features can be interpreted as

the magnitude of the signal’s inner product with sine waves of linearly spaced frequencies.

In contrast, the proposed networks learn weights with frequencies distributed similarly to

the distribution of notes in MusicNet. This gives the network higher resolution in the most

critical frequency regions.

A natural extension of the two layer networks discussed above is a three layer network with

a fully connected layer interposed between the layer-one convolutions and the linear output

67

layer. If we interpret the output of layer one as a spectrogram, then this intermediate layer

captures non-linear relationships between features of this spectrogram. A filter in layer two

might be sensitive to a particular chord, for example, or to a certain progression of notes.

In this vein, it is possible to build much deeper models on top of either the raw audio or

filterbank representation. These ideas are explored by Trabelsi et al. [2018]. However, as

we see in Section 3.3.6 (Table 3.6), simply building a deeper architecture does not directly

improve performance for the note classification task.

3.3.5 Frequency-Invariant Networks

We propose a frequency-invariant architecture, which introduces an inductive bias towards

translational symmetries in the frequency content of an audio signal. This architecture is

motivated by analogous work that exploits translational symmetries in images for object

recognition tasks [LeCun et al., 1998, Gens and Domingos, 2014, Benton et al., 2020]. The

frequency-invariant network is built on top of a filterbank, with two learned representational

layers. See Figure 3.11 for a visual schematic and description of this architecture. A hand-

crafted layer-one filterbank is crucial to support frequency-invariant convolutions at layer

two. Because the layer-one filters are frequency-ordered, the layer-two filters can learn pat-

terns that are invariant to translations in frequency. Consider, for example, a major triad

chord. This pattern is preserved under linear translations in log-frequency space. In the

frequency-invariant architecture, a single filter consisting of only 128 parameters could be

sensitive to major triads rooted at arbitrary frequencies. In contrast, a fully connected three

layer network would require distinct filters to identify this chord pattern at each location in

the log-frequency spectrum.

The preceding arguments about music-theoretic concepts like intervals and triads are

contingent on the use of a log-frequency filterbank for layer one. If we used a linear filterbank

(for example, the STFT) then a linear shift in the frequency domain would correspond to a

non-linear shift in the musical relationships between notes (low notes would translate further

than high notes) due to the human ear’s logarithmic perception of frequency. On the other

68

…

La
ye

r 1
La

ye
r 2

La
ye

r 3
Au

di
o

(in
pu

t)
Pr

es
su

re

Time (1 second)

Lo
g-

Fr
eq

ue
nc

y
(L

ev
el

 1
 C

ha
nn

el
s) ———Level 2 Channels ———

N
ot

es

Level 3 Channels

Lo
g-

Fr
eq

ue
nc

y

Time

Time

La
be

ls
La

ye
r 4

(o
ut

pu
t)

Lo
g-

Fr
eq

ue
nc

y

Pr
ed

ic
tio

ns
Time (10 seconds)

Figure 3.11: A frequency-invariant network for note classification: this is the TKH1 archi-
tecture evaluated in Tables 3.6, 3.7, and 3.8 . Audio input maps to Layer 1 according to
the log-spaced, cosine-windowed filterbank. Layer 1 maps to Layer 2 by convolving a set
of 128 × 1 learned filters along the log-frequency axis at each fixed time location. Layer 2
maps to Layer 3 by convolving again along the log-frequency axis, this time with a set of
filters of height 1 that fully connect along the time and channel axes of Layer 2. Notes are
predicted at Layer 4 by linear classification on the learned representation H given at Layer
3. Using a pre-defined filterbank at Layer 1 is essential; compare the “frequency invariant”
network (filterbank) to “channel convolution” network (learned weights in Layer 1) in Table
3.6. Sensitivity of transcription results to the choice of filterbank is presented in Table 3.6,
and this question is studied further by Cheuk et al. [2020a].

69

hand, the physics of audio (for example, overtones) exist on a linear scale. A model that uses

a linear filterbank can exploit translation invariances in the physics. We find empirically that

log-scale invariance yields greater performance gains for note classification than linear-scale

invariance.

Finally we consider a network that has the same architecture as the frequency-invariant

network, but instead treats the weights in the layer-one filterbank as optimization parameters

(i.e. the filterbank is learned). Because the weights in layer one are learned from a random

initialization, it is not clear that the learned filters will be ordered by frequency or that

their output channels will exhibit any topological structure. However, because the layer-

two convolutions in this architecture are designed to exploit local topological structure in

the channels, we might hope that end-to-end parameter optimization would find a good

topological structure for this space, a kind of self-organizing map [Kohonen, 1990].

3.3.6 Evaluating Transcription Models

For MusicNet, we evaluate results (Table 3.6) using average precision: the area under the

precision-recall curve of a classifier, as we vary its decision threshold for prediction [Salton

and McGill, 1984] (higher is better). This is a popular evaluation metric in the computer

vision community [Everingham et al., 2010] that characterizes the performance of a classifier

over the full spectrum prediction thresholds. We also report the Accuracy (higher is better)

and Error (lower is better) proposed as metrics for music transcription by Poliner and Ellis

[2007] for a specific classification threshold 0.4. The Su dataset [Su and Yang, 2015b] results

presented in Tables 3.7 and 3.8 were calculated by the MIREX organization; our THK1

submission is the frequency-invariant model described in Section 3.3.5 using a classification

threshold of 0.4.

Our best frequency-invariant network achieves 77.3% average precision on MusicNet, out-

performing the previous state of the art reported by Trabelsi et al. [2018], and popular com-

mercial software Celemony [Celemony]. Furthermore, we find that the frequency-invariant

architecture with a handcrafted filterbank outperforms end-to-end models trained on this

70

Model Average Precision Accuracy Error

filterbanks
STFT (no compress) 40.4 15.9 .860
STFT 60.4 36.2 .681
log frequencies 62.7 39.8 .646
cosine windows 66.1 38.7 .637
log + windows 66.7 38.9 .633
three layer network 73.8 51.4 .541
frequency-invariant (THK1) 77.3 55.3 .474
end-to-end
learned filterbank 67.8 48.9 .634
three layer network 70.8 48.8 .558
deep complex [Trabelsi et al., 2018] 72.9 - -
channel convolution 73.3 50.4 .531
commercial software
Melodyne [Celemony] 58.8 41.0 .760

Table 3.6: Average Precision, Accuracy, and Error for each of the models discussed in this
section, evaluated using the test set proposed by Thickstun et al. [2017]. Average Precision
is computed by scikit-learn [Pedregosa et al., 2011]; Accuracy and Error are computed using
mir eval [Raffel et al., 2014]. The Accuracy and Error scores are assume a global prediction
threshold of 0.4.

dataset [Trabelsi et al., 2018]. Performance is highly sensitive to layer one. While a naive

filterbank performs poorly, log-spaced, cosine-windowed filters approach the performance of

a learned filterbank (see Table 3.6; compare “log + windows” to “learned filterbank”). Also,

note the importance of the compressive non-linearity used for all models except the one

marked “no compress.”

The end-to-end architectures evaluated in Table 3.6 significantly underperform the cor-

responding architectures with a handcrafted layer-one filterbank. Because filterbanks are

essentially realizable in an end-to-end architecture (see Section 3.3.4) we infer that these

optimizations have converged to either a local minimum or a saddle point. In particular,

the learned layer-one weights of the channel convolution model exhibit some structure be-

tween neighboring filters, but not the global frequency ordering exhibited by the hand-crafted

71

Model Precision Recall Accuracy Error

MIREX 2009 Dataset
THK1 82.2 78.9 72.0 .316
KD1 72.4 81.1 66.9 .419
MHMTM1 72.7 78.2 65.5 .441
WCS1 64.0 80.6 59.3 .569
ZCY2 62.7 56.2 50.6 .601
Su Dataset
THK1 70.1 54.6 51.0 .529
KD1 45.9 45.0 38.1 .745
WCS1 63.6 39.7 35.7 .700
MHMTM1 61.2 36.8 35.2 .676
ZCY2 40.9 28.2 26.2 .799

Table 3.7: MIREX 2017 results for the top 5 participants by accuracy in each category
of the Multiple Fundamental Frequency Estimation challenge. THK1 is the wide layer 3
frequency-invariant model described in this document.

filterbanks.

We provide further evaluation of results for the frequency-invariant model obtained in

the MIREX 2017 Fundamental Frequency Estimation challenge. This is a yearly challenge,

in which entrants submit models that are then evaluated on two, privately held test-sets: the

MIREX 2009 dataset and the aforementioned Su dataset. Our frequency-invariant model

is competitive with state-of-the art on the MIREX dataset and far outperforms all other

competitors on the Su dataset. Table 3.7 summarizes the results for 2017, the year that

we submitted our entry. The next-best result on the Su dataset overall is the echo-state

network [Steiner et al., 2020], reported in the 2019 contest (see Table 3.8) which achieves

45.5 accuracy on the Su test set. By comparison, the frequency-invariant network achieves

51.0 accuracy on the same test set in the 2017 contest.

While it is difficult to conclusively attribute empirical performance of models, we see

in the extended results (Table 3.8) that both the frequency-invariant network (THK1) and

echo-state networks (SBJ) were trained using MusicNet. The AR2 model, which is the

most successful model for this challenge not trained on MusicNet, was also trained using a

72

dataset of human performances: the URMP dataset [Li et al., 2019]. The note templates

used for the CB entries are extracted from the MAPS piano dataset [Benetos and Dixon,

2012], and the weak results here may reflect a distributional shift between the statistics of

piano acoustics and the more diverse stringed instruments present in the Su dataset. Other

supervised models submitted to this contest, including the MHMTM1 model [Mita et al.,

2017] reported in Table 3.7 and DT1 [Troxel, 2016], MM1 [Marolt, 2004] are trained on

synthesized datasets. Unsupervised methods also appear fundamentally limited, the best

method in this class being SY1 [Su and Yang, 2015a].

3.4 Conclusion

We observed in Section 3.3.6 that current models supervised using synthesized data or piano

datasets, as well as unsupervised models, do not generalize well to the Su chamber music

dataset. This underscores the importance of training on datasets of in-domain human per-

formances, which in turn motivates the work on alignments in Section 3.1 that expands our

access to training data beyond synthetic datasets and Yamaha Disklavier recordings. How-

ever, even with robust automatic alignment algorithms, we may struggle to create in-domain,

aligned datasets at a sufficiently large scale to fully solve the music transcription problem.

This in turn motivates an interest in unsupervised generative models, which can be trained

on large-scale quantities of unlabeled data. The unsupervised paradigm introduces a differ-

ent set of challenges: how can we re-purpose an generic unsupervised model for a specific

task using a limited amount of supervision? In Chapter 4, we develop unsupervised gener-

ative models of musical scores, motivated by the possible use of such models as priors for

music transcription. In Chapter 5, we develop methodology for adapting generative models

to conditional generation tasks.

73

Model Year Precision Recall Accuracy. Error Dataset
THK1 2017 70.1 54.6 51.0 0.529 MusicNet
SBJ4 2019 65.2 48.3 45.5 0.578 MusicNet
SBJ3 2019 64.7 46.5 43.9 0.594 MusicNet
SBJ2 2019 68.9 43.6 41.9 0.604 MusicNet
AR2 2019 63.1 42.9 40.6 0.628 URMP
SBJ1 2019 68.3 39.9 38.5 0.637 MusicNet
SY1 2015 51.6 62.6 38.5 0.779 Unsupervised
KD1 2017 45.9 45 38.1 0.745 Unknown
KD2 2017 45.9 45 38.1 0.745 Unknown
SY2 2015 50 62 37.5 0.795 Unsupervised
SY3 2015 53.5 56.7 36.9 0.742 Unsupervised
SY4 2015 53.2 55.6 36.4 0.732 Unsupervised
WCS1 2017 63.6 39.7 35.7 0.7 Unknown
BW1 2015 61.4 48 35.6 0.684 MAPS, RWC
MHMTM1 2017 61.2 36.8 35.2 0.676 Synthesized
MM1 2016 58.1 32 31 0.714 Synthesized
PR1 2017 46 33.2 30 0.77 Unsupervised
ZCY2 2017 40.9 28.2 26.2 0.799 Unknown
CB1 2015 61.7 31.5 25.9 0.736 MAPS, RWC
CB2 2015 58.5 29.9 24 0.757 MAPS, RWC
CB1 2019 61.7 23.6 23.4 0.773 MAPS, RWC
CB1 2018 61.7 23.6 23.4 0.773 MAPS, RWC
CB1 2017 61.7 23.6 23.4 0.773 MAPS, RWC
CB1 2016 61.7 23.6 23.4 0.773 MAPS, RWC
CB2 2019 58.6 22.4 22.1 0.788 MAPS, RWC
CB2 2018 58.6 22.4 22.1 0.788 MAPS, RWC
CB2 2017 58.6 22.4 22.1 0.788 MAPS, RWC
CB2 2016 58.5 22.4 22.1 0.788 MAPS, RWC
PRGR2 2017 26.3 10.2 9.6 1.023 Unsupervised
PRGR1 2017 23.8 6 6.2 0.926 Unsupervised
MHMTM2 2017 28.7 5.7 5.7 0.945 Synthesized
HH2 2019 6.5 6.2 5.3 1.086 Unknown
DT1 2016 7.1 1.6 1.6 0.986 Synthesized

Table 3.8: Full MIREX Su dataset results for the Multiple Fundamental Frequency Estima-
tion challenge since the introduction of the Su dataset in 2015. THK1 is the wide layer 3
frequency-invariant model described in this document. There were no participants in this
challenge in 2020.

74

Chapter 4

MODELING SYMBOLIC REPRESENTATIONS OF MUSIC

Like written language and speech, classical music has two canonical representations: mu-

sical scores and audio performances. And like natural language, the written form of music

is amenable to symbolic digitization. In this chapter, we model the structure of symbolic

representations of music. We consider two symbolic modeling tasks: unsupervised generative

modeling (Section 4.2) and supervised composer attribution (Section 4.3). Looking back to

Chapter 3 provides motivation for learning a generative model over symbolic music: a gener-

ative model could be used as a Bayesian prior over the structure of musical scores, breaking

the strong statistical independence assumptions made by the frame-based formulation of the

music transcription task. And looking forward to Chapter 5, we can motivate composer

attribution models as Bayesian likelihoods that could be used to control sampling from a

generative model based on a desired musical style.

Unlike written language, there is no canonical digital representation of written music.

Whereas written language is comprised of linear sequences of characters from some fixed

alphabet, musical scores are a visual medium with an open-ended vocabulary of symbols

laid out across two dimensions. This complexity has lead to a proliferation of digital formats

for encoding musical scores, none of which can claim to be the canonical encoding of written

music. These encodings are not fully isomorphic, in the sense that we cannot construct

lossless translations from one digital encoding to another. When we work with symbolic

music, we must therefore make somewhat arbitrary choices in our digital encoding. In Section

4.1 we discuss a variety of approaches to encoding music. The modeling work in later sections

of this Chapter uses data derived from the KernScores dataset, which is encoded using the

Humdrum format described in Section 4.1.2.

75

Figure 4.1: Mozart’s piano sonata number 8 in A minor, movement 1, from measure 1.

In Section 4.2, we develop a generative model for a digital encoding of musical scores

derived from KernScores [Sapp, 2005]. Our aim is to construct an autoregressive density

estimator of the probability distribution over this data. Using the same data, in Section

4.3 we develop a supervised classification model for attributing composers to musical scores.

Because digital scores are a limited resource, we are interested in constructing models that

incorporate prior knowledge of music in order to bias learning towards structurally plausible

solutions. For the classification task, the success of these methods is relatively easy to

evaluate. But for generative modeling evaluation is subtle, resulting in a more nuanced

discussion of generalization and quantitative metrics for the generative task.

4.1 Symbolic Encodings of Music

In this section we identify three archetypes of digital encodings for classical music scores,

along with concrete examples of digital formats that illustrate these archetypes. Throughout

the section, we use the fragment of the score pictured in Figure 4.1 as a concrete example to

illustrate the behavior of each encoding. In Section 4.1.1 we consider sequential encodings,

which are most similar to the canonical encoding of language. The MIDI format is a rep-

resentative example of sequential encoding. In Section 4.1.2 we consider tensor encodings,

which are most similar to the canonical encoding of images. The Humdrum format can be

interpreted as a (serialized) example of a tensor encoding. Finally, in Section 4.1.3 we con-

76

sider hierarchical encodings, for which the MusicXml format is an (serialized) representative

example.

The diversity of encodings for musical scores creates ongoing challenges for the music

modeling community. Each encoding uses its own vocabulary, and these vocabularies often

cannot be perfectly translated. This makes it difficult to compare modeling results across

encodings; each encoding of music is effectively a unique data domain. In Section 4.2 we

will attempt to address some of these challenges, but other aspects of the problem seem

insurmountable. If one generative model’s vocabulary includes meter but not dynamics, and

another includes dynamics but not meter, how do we compare them? The natural language

modeling community has overcome similar challenges using Unicode, which is a reasonably

good approximation to a universal vocabulary for the characters of written natural language

(see Section 4.1.4). But it is not clear whether we can define a universal vocabulary for

musical scores, or if this is the right approach to comparing results in the music domain.

4.1.1 Sequential Encodings

A sequential encoding expresses the content of a score as a linear sequence of tokens. In a

trivial sense, any digital encoding of scores is sequential because the fundamental digital stor-

age medium is a sequence of bits. We will find it useful to distinguish sequential encodings,

where the semantic content of the data is expressed using a linear structure, from serialized

encodings of tensors (Section 4.1.2) and hierarchical structures (Section 4.1.3). The MIDI

format [International MIDI Association, 1983] is an example of a sequential data format

that is commonly used to encode musical scores. A Standard MIDI File [International MIDI

Association, 1988] is a container that stores a collection of MIDI tracks;1 Figure 4.2 presents

an example of a MIDI track that encodes the top line of the score fragment shown in Figure

4.1. MIDI is a binary format; the binary MIDI data is transliterated into text in Figure 4.2

to make the structure of the format more comprehensible. For the discussion in this section

1MIDI is arguably a hierarchical encoding with two layers of hierarchy: a MIDI file contains a collection
of tracks, each of with contains a sequence tokens.

77

we will refer to each line of the transliteration as a token, although for modeling purposes

we would typically use a more fine-grained tokenization.

The MIDI format is an operational format, in the sense that each token can be interpreted

as a command that manipulates a hidden state. The MIDI file as a whole can be thought of

as a program that, when executed sequentially, constructs a musical performance of the file’s

content. This procedural, operational style reflects the history of the MIDI format, which was

created as a network communication protocol for transmitting musical information between

electronic instruments and other devices (sound boards, synthesizers, etc.). The Standard

MIDI File format is a container for storing recording sequences of MIDI network traffic. The

time annotations associated with each token reflect this history; each time stamp represents

the time difference between receipt of the previous token and receipt of the current token.

When we read a MIDI file sequentially, we must keep track of a collection of hidden

state. For example, we need to track an accumulating value of time as we process each

token. The stateful, operational nature of MIDI is also reflected in how it encodes notes.

Each note is encoded by a pair of tokens: a note on token, followed later in the sequence by

a note off token. The note on and note off tokens manipulate a hidden state of active

notes, which a parser (or model) must track as it processes the MIDI file. While the MIDI

format is operational, this is not a general property of sequential encodings of music. It

is easy to define a declarative sequential format that replaces relative time stamps with

absolute timing information. The stateful note on and note off tokens could be replaced

with a single note token, with absolute start and end times.

A general property of sequential formats is that the order of many tokens is arbitrary.

Imposing a temporal order on tokens is canonical, but further constrains on the order of

tokens is difficult to justify. This is illustrated in several parts of our MIDI example: any

sequence of tokens with zero time delay (time=0) can be re-ordered without changing the

semantic content of the MIDI file. This poses a dilemma for modeling: either we can try to

learn a model that is invariant to these permutations of the sequence, or we can pre-process

these sequences with an arbitrarily imposed sort-order. Neither solution is ideal. Allowing

78

1 meta_message start_of_track

2 program_change channel =0 program =0 time=0

3 note_on channel =0 note =76 velocity =80 time=0

4 note_off channel =0 note =76 time =455

5 note_on channel =0 note =76 velocity =80 time =25

6 note_off channel =0 note =76 time =341

7 note_on channel =0 note =76 velocity =80 time =19

8 note_off channel =0 note =76 time =113

9 note_on channel =0 note =76 velocity =80 time=7

10 note_off channel =0 note =76 time =455

11 note_on channel =0 note =72 velocity =80 time =25

12 note_off channel =0 note =72 time =341

13 note_on channel =0 note =69 velocity =80 time =19

14 note_off channel =0 note =69 time =113

15 meta_message end_of_track

16 meta_message start_of_track

17 note_on channel =0 note =57 velocity =80 time=0

18 note_on channel =0 note =60 velocity =80 time=0

19 note_on channel =0 note =64 velocity =80 time=0

20 note_off channel =0 note =57 time =227

21 note_off channel =0 note =60 time=0

22 note_off channel =0 note =64 time=0

23
24 ...

25
26 meta message end_of_track

Figure 4.2: A text re-encoding of the binary MIDI encoding of the top line of the score
displayed in Figure 4.1. For brevity, a portion of the second track has been elided (...).

permutations of token order complicates the learning problem. But imposing an arbitrary

order raises difficult questions: could we have learned better using a different order? This

is a perennial question in the autoregressive modeling community [Larochelle and Murray,

2011] and has no easy answer: we cannot hope to exhaustively explore the space of orderings.

79

1 **kern **kern

2 *staff2 *staff1

3 *clefF4 *clefG2

4 =1- =1-

5 8A\ 8c\ 8e\L 4ee\

6 8A\ 8c\ 8e\ .

7 8A\ 8c\ 8e\ 8.ee\L

8 8A\ 8c\ 8e\J .

9 . 16ee\Jk

10 8A\ 8c\ 8e\L 4ee\

11 8A\ 8c\ 8e\ .

12 8A\ 8c\ 8e\ 8.cc/L

13 8A\ 8c\ 8e\J .

14 . 16a/Jk

15 ==|! ==|!

16 *- *-

Figure 4.3: Humdrum encoding of the score displayed in Figure 4.1. Each successive row
indicates a new musical event in the time series (first axis of the tensor). Parts (staves) are
organized in tab-separated columns (second axis of the tensor). Each tab-delineated item in
a row consists of one or more space-delineated tokens (third axis of the tensor). For example,
the notation 8A\ 8c\ 8e\L in Line 5, Column 1 indicates an A minor triad of eighth-notes
(the addition slashes and L indicate visual formatting instructions that we do not model in
this work).

4.1.2 Tensor Encodings

A tensor encoding expresses the content of a score as a multi-dimensional array of tokens.

Tensors can be a convenient way to encode musical score: one axis of the tensor can repre-

sent time, for example, another axis can represent pitch, and additional axes can represent

instrument, articulation, dynamics, etc. By encoding information across multiple axes, we

avoid the need to impose an arbitrary ordering on this information. The Humdrum format

[Huron, 1993] can be viewed as a serialized tensor encoding of musical scores. Figure 4.3

presents an example of Humdrum data that encodes the score fragment shown in Figure 4.1.

The piano-roll encoding discussed in Section 2.1 is another example of a tensor encoding.

80

Figure 4.4: Two scores with the same piano-roll representation as the score fragment in
Figure 4.1. The popular dataset introduced by Boulanger-Lewandowski et al. [2012] uses
this single-bit representation. A second bit is introduced in some more recent work: Liang
et al. [2017] refers to these as “Tie bits”)

The Humdrum format is technically a sequential encoding; indeed, any file format is

ultimately described by a linear sequence of bits. But we can view the Humdrum format as

a serialization of a tensor. A Humdrum file is organized into T lines: this is the first axis of

the tensor, which represents time. Each line of the file consists of V tab-separated columns:

this is a second axis of the tensor, which represents distinct musical voices (analogous to

MIDI tracks). Each column contains up to P space-separated tokens: this is a third axis

of the tensor, which represents concurrent events within a part. And each token consists of

up to A subtoken characters: this is a fourth axis of the tensor, which represents attributes

of a single event. The Humdrum file can be de-serialized into a 4-dimensional tensor with

dimensions T × V ×N × A, analogous to how a serialized image (stored on disk as a linear

sequence of bytes) can be deserialized into 3-dimensional tensor with dimensions H×W ×C.

A time-discretization of a piano-roll (Definition 2.1) is also a tensor encoding. In that

case, the tensor has just two axes: time and notes, omitting part assignments and other

details of a score. In Sections 4.2 and 4.3 we take A = 2 and adopt a working definition

of a score as a binary tensor x ∈ {0, 1}T×V×2P . This definition still omits many details of

a score, but it augments the simpler piano-roll representation with part information and a

second attribute. At each time t ∈ T , in each voice v ∈ V , we have two values. The first bit

81

Figure 4.5: A corruption of the score shown in Figure 4.1, discretized at eighth-note resolu-
tion. Fine-grained rhythmic information, and the pitch of the final note in the treble part,
are lost. Boulanger-Lewandowski et al. [2012] discretizes data at quarter-note resolution.

xt,v,p is the standard piano-roll pitch attribute, which indicates that pitch p ∈ P in voice v is

present at time t. The second bit xt,v,P+p indicates that pitch p in voice v begins at time t.

While classical piano-roll representations omit the second onset bit, both bits are necessary

to faithfully represent a musical score. Consider, for example, Figure 4.4: these two scores

have identical piano-roll encodings if only a single bit is used to indicate a pitch. Many other

scores also alias to this same piano-roll encoding. The addition of an onset bit delineates the

boundaries between multiple notes of the same pitch, thus resolving the ambiguity.

One subtlety of piano-roll representations is the choice of discretization. The piano-rolls

pianoroll : [0, T)→ {0, 1}N described by Definition 2.1 are continuous-time processes with

a real-valued temporal indices t ∈ [0, T). Discretizing this process at a sampling rate ∆ can

introduce distortions. We will argue in Section 4.2 that uniform discretization at a sufficiently

small sampling rate ∆ is information-preserving. From the perspective of Nyquist-Shannon

theorem [Shannon, 1949] we can interpret this result as a statement that scores contain no

high-frequency content. The consequences of choosing a discretization that is too coarse are

illustrated by Figure 4.5.

82

1 <score -partwise >

2 <part -list >

3 <part -group type="start" number ="1"/>

4 <score -part id="P1"/>

5 <part -group type="stop" number ="1"/>

6 </part -list >

7 <part id="P1">

8 <measure number ="1">

9 <attributes >

10 <divisions >4</divisions >

11 <time > <beats >4</beats > <beat -type >4</beat -type >

12 </time >

13 <staves >2</staves >

14 <clef number ="1"> <sign >G</sign > <line >2</line >

15 </clef >

16 <clef number ="2"> <sign >F</sign > <line >4</line >

17 </clef >

18 </attributes >

19 <note >

20 <pitch > <step >E</step > <octave >5</octave >

21 </pitch >

22 <duration >4</duration >

23 <voice >1</voice >

24 <type >quarter </type >

25 <stem >down </stem >

26 <staff >1</staff >

27 </note >

28
29 ...

30
31 <barline location ="right">

32 <bar -style >light -heavy </bar -style >

33 </barline >

34 </measure >

35 </part >

36 </score -partwise >

Figure 4.6: MusicXml encoding of the score displayed in Figure 4.1. For brevity, a portion
of the MusicXml document has been elided (...).

83

4.1.3 Hierarchical Encodings

A hierarchical encoding expresses the content of a score using a nested tree structure. Hi-

erarchies are a natural way to organize the content musical scores: a score contains parts

(tracks; voices) which in turn contain measures, which contain notes, etc. The MusicXml

format [Good, 2001] is an example of a hierarchical data encoding of musical scores. Like

the Humdrum format (Section 4.1.2) MusicXml is technically a serialized form of the hierar-

chical semantics that it describes. Figure 4.6 presents an excerpt of MusicXml encoding for

the score fragment shown in Figure 4.1. Hierarchical encodings hold the potential to mit-

igate some of the challenges of modeling long-range dependencies. Recent work has begun

to explore structured models that process hierarchically encoded music both as inputs for

conditional tasks [Jeong et al., 2019a,b] and as the targets for generative modeling [Wang

et al., 2020]. There has also been analogous work in the natural language domain using parse

trees [Dyer et al., 2016].

4.1.4 Encodings of Natural Language

Like with music, encoding difficulties have appeared in the history of modeling written

languages. Language models based on word tokenizations face an out-of-vocabulary problem:

for any fixed vocabulary of words, a sufficiently large corpus of data will contain words

outside of the fixed vocabulary. This complication is traditionally addressed by “unk”-

ing the corpus: each word in the corpus outside of the fixed vocabulary is replaced by a

special <unk> token [Jurafsky and Martin, 2009]. However, this preprocessing turns the

canonical task of modeling the distribution over natural language text into a non-canonical

task: modeling the distribution over altered text with a specific unk’ing pattern. Modelers

of musical scores face a similar challenge: encoding and pre-processing steps elide different

details of scores, and our task is reduced to modeling a particular, non-canonical encoding

of scores.

The vocabulary situation in language has improved recently with the introduction of

84

character-level models [Zhang et al., 2015] and subword tokenizations [Schuster and Naka-

jima, 2012, Sennrich et al., 2016, Wu et al., 2016, Kudo and Richardson, 2018]. While the

vocabulary of words in a language is open-ended, the vocabulary of characters is fixed: to

be sure that our vocabulary is comprehensive, we can take the entire base multilingual plane

of the Unicode as a character set. Subword tokenizations (e.g., byte-pair encoding) simply

compress the underlying character sequences by aggregating common chunks of characters

into single tokens. These models avoid non-canonical, lossy pre-processing steps and directly

model the canonical encoding of text as a sequence of characters. Unfortunately, whereas

the language community has been able to resolve the encoding question by simply clarifying

the canonical encoding of their data and using it, the encoding question for symbolic music

appears to be more fundamental.

4.1.5 Encodings of Images

In contrast to music and natural language, image processing has used a largely consistent and

stable tensor encoding: an image is encoded as a 3-dimensional tensor with height, width,

and color channel axes. One exception to this consistent approach is recent exploration

of coordinate encodings. These encodings augment the color channel information at each

spatial location of an image with an additional encoding of the spatial coordinates themselves.

This encoding is informationally redundant, because these locations are implicitly defined

by the structure of the tensor, but explicitly introducing this information can be helpful

for modeling. Encoding coordinates can re-introduce spatial information into convolutional

models that are otherwise spatially invariant [Liu et al., 2018] and transformer models that

are otherwise blind to spatial structure [Parmar et al., 2018].

4.2 Autoregressive Modeling of Musical Scores

The conceit of generative modeling is to view our data—in this case musical scores—as sam-

ples from an unknown probability distribution. We will “learn to compose” by constructing

a density estimator for this probability distribution (see Chapter 2, Section 2.2) and gen-

85

erate new scores by sampling from our approximation. For a broad survey of approaches

to automatic music composition, see Herremans et al. [2017]; for a more targeted survey of

classical probabilistic approaches, see Conklin [2003]. Our focus in this work is on models

of musical scores, in contrast to other recent and impressive work that models expressive

musical performances [Oore et al., 2020, Huang et al., 2019]. We discuss the distinction

between these two modeling tasks in Section 4.2.2.

Polyphonic scores consist of notes and other features of variable length that overlap each

other in quasi-continuous time. Scores contain a vast heterogenous collection of information,

much of which we will not attempt to model: time signatures, tempi, dynamics, etc. We

will therefore give a working definition of a score that captures the essential aspects of a

score that we will model: pitch, rhythm, and voice assignments. This extends the definition

of a piano-roll (Chapter 2, Definition 2.1) to include voice and onset information. Like in

Definition 2.1, we let N denote a vocabulary of pitch classes.

Definition 4.1. A score of length T , consisting of V voices, is a discrete-valued function

score : [0, T)→ {0, 1}V×2P . For each voice v ∈ {1, . . . , V } and each pitch p ∈ {1, . . . , N},

scoret,v,p = 1 if pitch p is on at time t in voice v, (4.1)

scoret,v,P+p = 1 if pitch p begins at time t in voice v. (4.2)

Both “pitch” bits (4.1) and “onset” bits (4.2) are important to faithfully encode a score;

the onset bit allows the encoding to distinguish between a sequence of repeated notes of

the same pitch and a single sustained note (see Section 4.1.2, Figure 4.4). Incorporating

voice annotations allows us to think of polyphonic scores as a collection of correlated single-

voice, homophonic composition problems; this presents us with interesting opportunities for

serializing and modeling scores, which we explore in Sections 4.2.3 and 4.2.4.

We will work with temporal discretizations of scores, uniformly sampled at a uniform

rate ∆, given by the Nyquist rate of the corpus.

86

Definition 4.2. The Nyquist rate [Nyquist, 1928] for a corpus of musical scores is the largest

time value ∆ ∈ R such that all change-points in the corpus occurs at integer multiples of ∆.

A discretized score is a tensor x ∈ {0, 1}T/∆×P×2N defined by xk = score(k∆).

For example, the Nyquist rate of a corpus containing 32nd notes and triplet patterns, but

not 64th notes or more rhythmically complex quintuplets or septuplets, would be ∆ = 1/48

samples per beat. See Section 4.1.2 for an illustration of the consequences of sampling at a

lower rate than the Nyquist rate. Proposition 4.3 shows that sampling scores at the Nyquist

rate is sufficient, in the sense that a higher sampling rate yields no additional information

about the score.

Proposition 4.3. Let P = (0,∆, 2∆, . . . , T) be the uniform partition of the interval [0, T]

at the Nyquist rate. For any refinement R of P,

H(x) = H(scoreR1 , . . . , score|R|) (4.3)

Proof. Applying the chain rule for conditional probabilities to the entropy of a score sampled

on a partition R,

H(scoreR1 , . . . , score|R|) = E
score∼q

log q(scoreR1 , . . . , scoreR|R|). (4.4)

=

|R|∑
k=1

E
score∼q

log q(scoreRk |scoreR1 , . . . , scoreRk−1
). (4.5)

Consider terms q(scoreRk |scoreR1 , . . . , scoreRk−1
) where Rk /∈ P . There must be some n

such that n∆ < Rk < (n + 1)∆. We must have scoreRk = scoren∆ because, by definition

of the Nyquist rate ∆ (Definition 4.2) all change-points in x occur at integer multiples of ∆.

Clearly n∆ ∈ R (R is a refinement of P) and n∆ ∈ (R0, . . . ,Rk−1) (n∆ < Rk). It follows

that

E
score∼q

log q(scoreRk |scoreR1 , . . . , scoreRk−1
) = E

score∼q
log q(scoreRk |scoren∆) = 0. (4.6)

87

Dropping all such terms k with Rk /∈ P we see that

H(scoreR1 , . . . , score|R|) =
∑

k : Rk∈P

E
score∼q

log q(scoreRk |scoreR0 , . . . , scoreRk−1
) (4.7)

=

T/∆∑
k=1

E
score∼q

log q(scorek∆|score0, . . . , score(k−1)∆) (4.8)

= E
score∼q

log q(score0, score∆, . . . , scoreT) = H(x).

From the perspective of the Nyquist-Shannon theorem [Shannon, 1949] Proposition 4.3

states that scores contain no high frequency content. It may be illuminating to draw a

contrast with processes such as Brownian motion, for which refinement of the sampling

partition always reveals new details of the process. Indeed, Proposition 4.3 is a special

property of scores that does not even hold for other forms of digital music, such as expressive

MIDI performances (see Section 4.2.2). The difference is that in performances, unlike scores,

musical events (e.g., note onsets and offsets) occur at fuzzy real-valued timestamps, rather

than precise subdivisions of a metrical structure.

We parameterize our estimator of the distribution over tensors x with a neural network.

Because scores have varying lengths, we find it natural to construct autoregressive models of

these objects (see Chapter 2, Section 2.3) that parameterize conditional distributions of the

evolution of the score over time. A precise discussion of the autoregressive factorization used

in this work is presented in Section 4.2.3, along with discussion of alternative factorizations.

Musical scores are highly structured objects, which motivates an exploration of neural ar-

chitectures that can exploit this structure; we consider a variety of music-specific modeling

techniques in Section 4.2.4. Evaluating generative models is difficult [Theis et al., 2016], and

this difficulty has lead to a diversity of opinions (and substantial disagreement) over method-

ology for evaluating generative models. We discuss the challenge of evaluating generative

models in Section 4.2.2, and develop a cross-entropy measure for studying the effects of the

modeling techniques presented in Section 4.2.4. We conclude in Section 4.2.5 with an evalu-

88

ation of our best model using a user study, along with a broader discussion of methodology

for evaluating generative models. Supplementary material including compositional samples

and code for reproducing the experiments is available online.2

4.2.1 Related Work on Symbolic Generative Modeling

Early probabilistic models of music focused on single-voice, monophonic melodies. Possibly

the first probabilistic model for music generation was proposed by Pinkerton [1956]. This

work was followed concretely by Jr. et al. [1957], who built a Markov transition model

estimated on small music corpora. A proliferation of work on computer-generated music

and data-driven musicology followed these pioneering works in the 1960’s and 1970’s; see

Roads [1980] for a survey. An important development during this era was the application

of Chomsky-inspired grammatical analysis to music, exemplified by Kohonen [1989]; this

latter work contemplates the generation of two concurrent musical parts, one of the earliest

examples of polyphonic generation.

The first application of neural networks to melody composition was proposed by Todd

[1989]. This work prompted followup [Mozer, 1994] using an alternative data representation

inspired by pitch geometry ideas [Shepard, 1982]; the relative pitch and note-embedding

schemes considered in Section 4.2.4 can be seen as a data-driven approach to capturing

some of these geometric concepts. Neural melody generation was revisited by Eck and

Schmidhuber [2002], using long short-term memory models. More recent work on melodic

composition experiments with techniques to capturing longer-term structure than classic

recurrent models provide. Jaques et al. [2017] explore reinforcement learning as a tool for

eliciting long-term structure, expanding on ideas first considered by Franklin [2001]. Roberts

et al. [2018] also attempt to capture long-term structure, proposing a variational auto-encoder

for this purpose. For recent work on monophonic composition, see Sturm et al. [2016], Jaques

et al. [2017], Roberts et al. [2018].

2http://homes.cs.washington.edu/~thickstn/ismir2019composition/

http://homes.cs.washington.edu/~thickstn/ismir2019composition/

89

Work on polyphonic music composition has a shorter history. Early precursors include

Kohonen [1989], which considers two-voice composition, and Ebcioğlu [1988], which proposes

an expert system to harmonize 4-voice Bach chorales. The harmonization task became

popular, along with the Bach chorales dataset [Allan and Williams, 2004]. Multiple voice

polyphony is directly addressed by Lavrenko and Pickens [2003], albeit using a simplified

preprocessed encoding of scores that throws away duration information. Maybe the first work

with a fair claim to consider polyphonic music in full generality is Boulanger-Lewandowski

et al. [2012]; that work proposes a coarsely-discretized tensor encoding of musical scores (see

Section 4.1.2) and examines the cross-entropy of a variety of neural models on several music

datasets (including the Bach chorales). Much subsequent work on polyphonic models uses

the dataset, encoding, and quantitative metrics introduced by Boulanger-Lewandowski et al.

[2012], notably Vohra et al. [2015] and Johnson [2017].

Several recent generative models of scores focuses exclusively on the Bach chorales dataset

[Liang et al., 2017, Hadjeres et al., 2017, Huang et al., 2017]. Both Liang et al. [2017] and

Hadjeres et al. [2017] evaluate their models using qualitative large-scale user studies. The

system proposed by Hadjeres et al. [2017] optimizes a pseudo-likelihood, so its quantitative

losses cannot be directly evaluated using the cross-entropies discussed in Section 4.2.2. The

generative model proposed by Liang et al. [2017] could in principle report cross entropies,

but that work also focuses on a user study evaluation. Quantitative cross-entropy results

are reported for the Bach chorales by Huang et al. [2017]. Both Hadjeres et al. [2017] and

Huang et al. [2017] propose non-sequential Markov chain sampling schemes for generation,

in contrast to the ancestral sampler used by Liang et al. [2017] and our models in Section

4.2.4. Markov-chain Monte Carlo samplers are revisited in Chapter 5.

4.2.2 Evaluation Methodology

Our work uses a cross-entropy metric, calculated on a holdout subset of the score data, to

study the effects of the various structural modeling assumptions discussed in Section 4.2.4.

It is reasonable to question whether cross-entropy is the right metric for this study. On the

90

Bach Beethoven Chopin Scarlatti Early Joplin Mozart Hummel Haydn

191,374 476,989 57,096 58,222 1,325,660 43,707 269,513 3,389 392,998

Table 4.1: Notes in the KernScores dataset, partitioned by composer. The “Early” collection
consists of Renaissance vocal music; a plurality of the Early music is composed by Josquin.

one hand, if we accept the conceit that our goal is to model a probability distribution over

musical scores, then cross-entropy is a natural finite-sample estimate of the Kullback-Leibler

divergence from our model to the data distribution. On the other hand, if we view this prob-

abilistic conceit as a concrete approach to the broader automatic music composition problem,

then we need to argue that a test-set cross-entropy is a good surrogate for measuring the

quality of the samples we generate. In practice, we observe across many generative modeling

tasks that models trained to minimize cross-entropy to produce qualitatively good samples

[Brown et al., 2020, Radford et al., 2019, Esser et al., 2021, Dhariwal et al., 2020]. Because

the cross-entropy is easily calculated, we are able to methodically ablate our structural mod-

eling choices (Section 4.2.4). But in deference to the broader question of automatic music

composition, we also analyze our best-performing model using a user-study (Section 4.2.2).

Dataset. The models discussed in this paper are trained on the KernScores dataset

[Sapp, 2005], a collection of early modern, classical, and romantic era digital scores encoded

in Humdrum format 4.1.2 and assembled by musicologists and researchers associated with

Stanford’s CCARH.3 We use a subset of this dataset consisting of over 2,300 scores containing

approximately 2.8 million note labels. Tables 4.1 and 4.2 give a sense of the contents of the

dataset. We discretize the dataset using ∆ = 1/48 samples per beat (see Definition 4.2);

this sampling rate captures most—but not all—of the content of this corpus but will create

aliasing in rare instances of 64’th notes and quintuplet patterns. We hold out 200 randomly

chosen scores as a test set for calculating model cross-entropies.

We contrast this dataset’s Humdrum-encoded scores with the MIDI encoded expressive

3http://kern.ccarh.org/

http://kern.ccarh.org/

91

Vocal String Quartet Piano

1,412,552 820,152 586,244

Table 4.2: Notes in the KernScores dataset, partitioned by ensemble type.

performances used by many recent large-scale music modeling efforts.4 As discussed in

Section 4.1.1, MIDI was designed as a protocol for communicating digital performances,

rather than scores. This is exemplified by the MAPS [Emiya et al., 2010] and MAESTRO

[Hawthorne et al., 2019] datasets, which consist of symbolic MIDI data aligned to expressive

performances. While this data is symbolic, it cannot be interpreted as scores because it is

unaligned to a grid of beats and does not encode note-values (quarter-note, eighth-note, etc).

Some MIDI datasets are aligned to a grid of beats, including MusicNet (Section 3.2). But

heuristics are still necessary to interpret this data as visual scores. For example, many MIDI

files encode “staccatto” articulations by shortening the length of notes, thwarting simple

rules that identify note-values based on length.

Evaluation. Let q̂ be an estimate of the unknown probability distribution over scores

q. We want to measure the quality of q̂ by its cross-entropy to q (Definition 2.5). Because

the entropy of a score grows with its length T is is natural to consider a cross-entropy rate

that measures the average cross-entropy over a unit of time. By convention, we measure

time in units of beats, so the cross-entropy rate will have units of bits per beat. Defining

cross-entropy for a continuous-time processes such as score : [0, T)→ {0, 1}P×2N (Definition

4.1) generally requires some care. But in light of Proposition 4.3, a cross entropy defined

on discretized scores x ∈ {0, 1}T/∆×P×2N sampled at the Nyquist rate (Definition 4.2) is

sufficient.

Definition 4.4. The rate-adjusted cross entropy from between two distributions q̂ to q over

4A notable exception is Lavrenko and Pickens [2003], which uses data derived from the KernScores
collection considered here.

92

scores of length T sampled at rate ∆ is given by

H(q, q̂) ≡ E
x∼q

[
− 1

T∆
log q̂(x0,x1,x2, . . . ,xT/∆)

]
.

This is a cross entropy measure of joint distributions over musical scores. Notably, it

is agnostic to autoregressive factorization of this distribution. As we will see in Section

4.2.3, there are many possible autoregressive factorizations of the joint distribution over

scores. These choices model different conditional distributions, with distinct corresponding

conditional cross entropies. Measuring cross entropy in units of bits per beat according to

Definition 4.4, we can compare cross entropy results across models constructed using different

factorizations. In practice, calculating H(q, q̂) from the next-token cross entropy of a given

autoregressive model is a simple change of units, calculated via a multiplicative factor.

4.2.3 Factoring the Distribution over Scores

We are interested in building a neural autoregressive model (Chapter 2, Section 2.3) of the

unknown distribution q(x) over discretized musical scores x ∈ {0, 1}T/∆×P×2N . The idea

is to serialize the tensor x, and factor the joint distribution over scores into a sequence of

conditional distributions. We parameterize this collection of conditional distributions with a

neural network. To emphasis this point: we use a single neural network with a common set of

weights to parameterize each of the conditional distributions arising from the autoregressive

factorization. This reflects the modeling assumption that the evolution of a serialized score

is dependent only on its history, rather than an absolute position in the sequence; formally,

we assume that the sequence is stationary. The stationarity assumption can be weakened

by appending absolute position information to the encoding of the score (see Section 4.1.5

for analogous weakening of the translation-invariant assumption imposed by convolutional

models in the vision domain).

There are many ways to serialize a score tensor. This choice of serialization, and the

corresponding factorization of q(x), has broad implications for both the computational ef-

93

ficiency and the inductive biases of our autoregressive models. In the remainder of this

section we review raster and sparse serializations, and introduce new serializations inspired

by run-length encoding that we use for the modeling work in Section 4.2.4. The serializations

presented below are not comprehensive, but they are chosen to illustrate a variety of choices

and the consequences these choices have for modeling.

Raster Serializations. Rasterization serializes the score tensor along the time axis in

uniform discrete steps of length ∆. An autoregressive factorization of a rasterized score has

the following form:

q(x) =

T/∆∏
k=0

q(xk|x1:k) =

T/∆∏
k=0

q(scorek∆|score0:k∆) (4.9)

Throughout this work, a slice a:b is inclusive of the first index a but does not include the

final index b. Rasterized time is a common serialization of scores, notably used to construct

an autoregressive factorization of polyphonic music by Boulanger-Lewandowski et al. [2012].

The values xk ∈ {0, 1}P×2N are still high-dimensional objects; if we impose an order on parts

and notes, we can further factor this distribution into

q(x) =

T/∆∏
k=1

V∏
v=1

2P∏
p=1

q(xk∆,v,p|x1:k∆,xk∆,1:v,xk∆,v,1:p). (4.10)

The values xk∆,v,p are simply Bernoulli random variables, which can be directly modeled us-

ing, for example, a parameterized sigmoid. The orders imposed on voices and pitch classes are

somewhat arbitrary; pitches are typically ordered either low-to-high or high-to-low. Raster

serialization of score tensors is directly comparable to the serializations of images adopted

for autoregressive image modeling [van den Oord et al., 2016b, Salimans et al., 2017, Parmar

et al., 2018]. Like musical scores, image serialization requires an arbitrary choice of order: the

spatial dimensions are typically ordered left-to-right, top-to-bottom, and the color channels

of each pixel are ordered using the conventional red-green-blue ordering.

Raster models are expensive to train and evaluate on rhythmically diverse music. Rasteri-

94

zation at the Nyquist frequency creates sequences of length O(1/∆); a full serial factorization

of the score given by Equation (4.10) creates sequences of length O(TPV/∆). While the

costs associated with these serializations can be somewhat mitigated by parallelism during

training, the exact, ancestral algorithm for sampling from autoregressive models is a fun-

damentally serial operation (see Chapter 5 for a discussion of approximate sampling from

autoregressive models, which can sometimes mitigate this sampling cost). To reduce the com-

putational burden of raster serialization, raster models are typically trained using a coarse

sampling rate ∆. Unfortunately, as we saw in Section 4.1.2, coarse discretization can create

significant aliasing effects.

Run-Length Serializations. Definition 4.5 introduces one possible variant of run-

length serialization, which exploits the temporal stability of musical scores to reduce sequence

length.

Definition 4.5. Let c0, . . . , cL denote the temporal change points in a score x. The run-

length serialization of x is the tensor e ∈
(
N⊕ {0, 1}P×2N

)L
defined by ek,0 = ck+1−ck

∆
∈ N

and ek,1 = xck .

The sequence e is non-linear in its time index k: entry ek+1 occurs dk∆ beats after

entry ek, in contrast to raster serializations where xt+1 occurs at a constant time interval ∆

following xt. We can factor the distribution over run-length encoded scores into conditional

distributions over natural-number durations e0 and binary note values e1:

q(e) =
L∏
k=1

q(ek|e1:k) =
L∏
k=1

q(ek,0|e1:k)
V∏
v=1

2P∏
p=1

q(ek,v,p|e1:k, ek,0, ek,1,1:v, ek,1,v,1:p). (4.11)

These serializations have length O(LPV), in contrast to raster serializations which have

length O(TPV/∆). Because the number of change points L in a score is much smaller than

the number of samples T/∆, run-length serializations save a substantial amount of compu-

tation by predicting a single run-length duration ek,0 rather than re-iterating a sequence of

identical predictions xt,p,n at small incremental time steps. One criticism of the run-length

95

Figure 4.7: The Mozart from Figure C.1, with red lines that indicate the boundaries of events
under a run-length factorization of the score. Notes in the treble staff are chopped up into
eight-note runs, so instead of predicting note durations (quarter, dotted-eighth, sixteenth,
etc.) we instead predict fragments of notes (eighth, continue eighth, continue eighth, etc.).

factorization is that, when notes of different durations overlap in a score, the longer notes are

chopped up along the boundaries of the short notes as illustrated in Figure 4.7. Rather than

predicting conditional likelihoods of musically meaningful quantities like notes, we instead

predict artificial vertical slices of a score.

Homophonic Run-Length Serializations. Putting full scores aside for a moment,

consider a single voice v, i.e., a slice x1:T/∆,v,1:2P of a score tensor.

Definition 4.6. Let cv0, . . . , c
v
Lv

denote the temporal change points in voice v of a score x.

The run-length serialization of x1:T/∆,v,1:2P is the tensor r ∈
(
N⊕ {0, 1}×2N

)L
defined by

rk,0 =
cvk+1−c

v
k

∆
∈ N and rk,1 = xcvk,v.

And we can factor the distribution over run-length encoded voices as

q(r) =
Lv∏
k=1

q(rk|r1:k) =
L∏
k=1

q(rk,0|r1:k)
2P∏
p=1

q(rk,p|r1:k, rk,0, rk,1,1:p). (4.12)

By definition of the Humdrum data format, voices in the KernScores dataset are homophonic:

no notes are sustained across a change point. To illustrate this point, in Figure 4.7 the score

as a whole is polyphonic because some notes are sustained across change points. The treble

staff is monophonic, because only one note is performed at a given time. The bass staff is

homophonic: while multiple notes are performed concurrently, they proceed in rhythmic lock-

96

step. This means that, for an individual voice, run-length serialization behaves very nicely:

it reduces the length of our serialization (compared to rasterization) without breaking up the

score into non-musical slices. Indeed, the durations rk,0 are highly musically salient: they

are the durations of notes. The average voice in the KernScores dataset has 1.25 notes per

beat, so run-length serialization of these voices requires just 1.25 tokens per beat, in contrast

to the ∆ tokens per beat required by raster serialization. In the next section we consider an

serialization of full polyphonic scores that interleaves run-length serializations of individual

homophonic voices. In the remainder of this section, we will address some technical details

about homophonic voice serializations.

Informally, it is convenient to think of a voice as a musical part assigned to an individual

musician. For some music—piano music in particular—it is necessary to draw a distinction

between a voice and a part. Consider the piano score given in Figure 4.8. This single piano

part is more comparable to a complete score than the individual parts of, for example, a string

quartet. Indeed, a sophisticated musician might parse this score as four distinct voices: a

high sequence of quarter and eighth notes, two middle sequences of sixteenth notes, and a low

sequence of quarter notes. In the last measure, the lowest two parts combine into a single bass

line of sixteenth notes. These voice divisions are indicated in the score with a combination of

beams, slurs, and other visual queues. We do not model these visual indicators; instead we

rely on the voice annotations provided by the KernScores dataset. These voice annotations

are a unique aspect of the KernScores dataset and Humdrum format; while in principle

formats like MIDI could encode this information, in practice they typically collect all notes

for a single instrument into a single track, or possibly two tracks (for the treble and bass

staves, as seen in the figure) in the case of piano music.

In rare cases, the distinction between voices and musical parts must also be made for

stringed instruments; a notable example is Beethoven’s string quartet number 14, in the

fourth movement between measures 165 and 173, where the four instruments each separate

into two distinct parts creating brief moments of 8-part harmony. The physical constraints of

stringed instruments discourage more widespread use of these polyphonies. For vocal music,

97

Figure 4.8: Beethoven’s piano sonata number 8 (Pathetique) movement 2, from measure
9, rendered by the Verovio Humdrum Viewer. Although visually rendered on two staves,
this sonata consists of four parts: a high sequence of quarter and eighth notes, two middle
sequences of sixteenth notes, and a low sequence of quarter notes.

of course, physical constraints prevent intra-instrument polyphony entirely.

As Figure 4.8 illustrates, these abstract homophonic voices can weave in and out of

existence. Two voices can merge with each other; a single voice can split in two; new voices

can emerge spontaneously. The KernScores data provides annotations that describe this

behavior. We can represent these dynamics of parts as a V × V flow matrix at each time

step that describes where each part moves in the next step (V is an upper bound on the

number of voices; for the KernScores corpus used in this work, we take V = 6). At most time

steps, this flow matrix is the identity matrix. The state-based, recurrent models proposed

in Section 4.2.4 can easily be adjusted to accommodate these flows. If two parts merge,

sum their states; if a part splits in two, duplicate its state. These operations amount to

multiplying the vector of state estimates for the parts with the flow matrix at each time

step. However, we do not model the flow matrix. Because the flow matrix for piano music

contains some (small) amount of entropy, we therefore exclude piano music from the results

reported in Table 4.4. We do include the piano music in training.

Interleaved Polyphonic Run-Length Serialization. We now propose a serialization

of full polyphonic scores that interleaves homophonic run-length serializations of each of a

score’s constituent voices. The idea is to serialize each voice using run-lengths (Definition

98

4.6) and interleave the events in each voice sequence, sorted by time. When events occur in

multiple voices at the same time, we use an arbitrary numerical order assigned to each voice to

determine the order of these concurrent events (concurrent events occur quite frequently, for

example at the beginning of each measure). This interleaved serialization ensures that, when

we sample from our model, the sequence of events for any particular voice never advances

further than one note-value ahead of the partially generated sequence for any other voice.

Formally, we can describe this serialization using Definition 4.7.

Definition 4.7. Let cv0, . . . , c
v
Lv

denote the temporal change points in voice v of a discretized

score x, with L ≡ ∑V
v=1 Lv. Define a total order on change points according to the rule

cvk < cuk′ for all v, u if k < k′, and cvk < cuk if v < u. For each i ∈ {1, . . . , L} let αi and βi denote

the voice-index and voice of the i’th change point according the total ordering of change points.

The interleaved voice run-length serialization of x is the tensor s ∈ ({0, 1}D ⊕ {0, 1}N)L

defined by sk,0 =
c
βk
αk+1−c

βk
αk

∆
∈ N and sk,1 = x

c
βk
αk

.

We can factor the distribution over scores according to this serialization as

q(s) =
L∏
k=1

q(sk,0|s1:k)
2P∏
p=1

q(sk,1,p|s1:k, sk,0, sk,1,1:p). (4.13)

This factorization produces a ragged frontier when sampling, where generation of any par-

ticular voice advances no further than one note-value ahead of any other voice; in contrast,

the raster sampling advances with a smooth frontier, one ∆-slice of time after another. The

KernScores multi-voice corpus averages approximately 5 notes per beat, so only 5 predictions

per beat are required for to sample from an autoregressive model of interleaved polyphonic

run-length encoded scores. This is an order of magnitude less computation than the ∆ = 48

predictions per beat required for a raster model.

Sparse Serializations. Another family of serializations based on MIDI has become

popular in recent work on expressive modeling of MIDI performances [Oore et al., 2020,

Huang et al., 2019]. Like MIDI, the idea is to serialize a score as a sequence of events. A

99

simple example of this type of serialization is to represent a score as a list of notes, where each

note is a tuple consisting of a pitch class, voice, start time, and duration. This serialization

takes advantage of the sparsity of musical scores to eliminate the number of pitch classes

as a factor in serialization length; indeed, these serializations can be compared to classical

methods for sparse matrix storage [Gilbert et al., 1992]. Recall that raster serializations

have length O(TPV/∆), and run-length serializations have length O(LPV) (where L is the

number of change points in the score). In contrast, MIDI-style serializations have length

proportional (equal, for the serialization proposed here) to the number of notes; like L,

the number of notes is proportional to the length of the performance T , and the number

of notes is also proportional to the number of voices V . But this serialization breaks the

dependence on the number of pitch classes P ; the number of active pitches at any time in

a score is proportional to the number of voices, not the size of the space of pitch classes.

Furthermore, whereas the run-length serialization proposed in Definitions 4.6 and 4.7 rely

on the homophonic voice structure of the Humdrum encoding, these sparse serializations

generalize more easily to the other encodings of music discussed in Section 4.1. Sparse

serializations merit strong consideration for future work on generative models of symbolic

music, with the caveat that it is unclear how to combine these serializations with the relative

pitch weight-sharing techniques proposed by Johnson [2017] (see Section 4.2.4).

4.2.4 Structure-Aware Models of Scores

In this section we consider neural architectures for parameterizing an autoregressive model

of musical scores (Definition 4.2) using the run-length serializations discussed in Section

4.2.3. First, we consider how to encode the conditional history used as input for out models.

Second, we introduce a single-voice, homophonic modeling task: estimation of the marginal

distribution over a single voice in the score tensor. Learning the marginal distribution over

voices is similar in spirit to classical monophonic generation tasks; homophonic composition

generalizes monophonic composition to allow for chords. Results for this task are summarized

in Table 4.3. Third and finally, we consider multi-voice, polyphonic estimation of the joint

100

distribution over scores. Results for this task are summarized in Table 4.4.

Encoding the History

Like the choice of factorization, there are many options for encoding the history of a score

used for prediction of values s1:k, sk,0, sk,1,1:p (the serialization described by Definition 4.7).

One natural choice of encoding is the serialization used to define the autoregressive factor-

ization (Equation (4.13)) [Oore et al., 2020, Huang et al., 2019] but the serialization used

for autoregressive factorization and the encoding of the history in the conditional distri-

butions q(sk,0|s1:k) and q(sk,1,p|s1:k, sk,0, sk,1,1:p) are not inherently connected. Indeed, while

serialization is necessary for autoregressive factorization, these sequences are lengthy, some-

what arbitrarily ordered (see the discussion at the end of Section 4.1.1) and can obscure the

structure of a score. Another natural choice of encoding is a masked version of the score

tensor x (Definition 4.2). See Chapter 2, Section 2.3 for a discussion of masking in neural

autoregressive models, as well as Germain et al. [2015]. Rasterization of the time axis of the

score tensor means that this encoding is also quite lengthy.

In this work, we use a masked run-length encoding of the score tensor to encode history:

r (Definition 4.6) for single-voice modeling, and e (Definition 4.5) for multi-voice modeling.

Even using a run-length encoding, full musical scores are quite lengthy. For both the single-

voice and multi-voice tasks, we truncate the history at a fixed number of time indices. We

explore several history lengths in the experiments and observe diminishing improvement in

quantitative results for windows beyond the range of 10-20 run-lengths: see Experiment

group (1,2,6,7) in Table 4.4. These window sizes are generous compared to the lengths of

traditional n-gram models, but quite short compared to modern neural models of symbolic

music inspired by work in language modeling [Huang et al., 2019] (2,048 tokens, using a

sparse serialized encoding of the history; see Section 4.2.3).

For single-voice modeling we also consider the encoding r̃ ≡ e:,v, a single-voice slice of

the run-length encoded score tensor. Observe that r̃ 6= r because the note durations rk,0

are subdivided in r̃ by the change points of other voices in the full score. With the single-

101

voice encoding r, simple linear filters can be learned that are sensitive to particular rhythmic

patterns: e.g., groups of four eighth notes, or three triplet-quarter notes. This is not the

case for r̃, for which a single rhythmic pattern can be broken up in a variety of ways. These

observations might lead us to consider raster encodings for multi-voice history, restoring

effectiveness of simple linear filters at a cost of increasing the length of the history encoding.

We find that recurrent network architectures for the single-voice task are unhampered when

retrained on r̃: compare Experiments 21 and 22 in Table 4.3. Performance falls slightly when

learning on r̃, but this is to be expected because history interspersed with continuations is

effectively a shorter-length history. So at least for recurrent networks, we find that trading

off linearity for a reduction in sequence length is desirable.

Single-voice models

Using the autoregressive factorization (Equation 4.12) of the run-length serialization given by

Definition 4.6, we explore fully connected, convolutional, and recurrent models for learning

the conditional distributions q(rk,0|r1:k) over note-values and q(rk,1,p|r1:k, rk,0, rk,1,1:p) over

pitches. We build separate models that estimate rk,0 and rk,1,p, with respective losses Losst

and Lossn. In the remainder of this section, we consider opportunities to exploit the structure

of music by sharing weights in our models. Quantitative results for these single-voice models

are summarized in Table 4.3.

Autoregressive modeling. To build a generative model over conditionally stationary

sequential data, we make the conditional stationarity assumption q(rk|r1:k) = q(rk′ |r1:k′) for

all k, k′ ∈ N (see Section 2.3). We can then learn a single family of conditional distributions

that share model parameters across all time translations. Scores are not quite conditionally

stationary; the distribution of notes and rhythms varies substantially depending on the sub-

position within a beat. To address this, we follow the lead of Johnson [2017] and Hadjeres

et al. [2017] and augment our history tensor with a one-hot location feature vector ` that

102

indicates the subdivision of the beat at which we are presently making predictions.5 Compare

the loss of duration models (Losst) with and without these features in Experiment pairs (3,4),

(6,7), (10,11), (12,13), and (15,16) in Table 4.3.

Relative pitch. We can perform a similar weight-sharing scheme with pitches as we do

with time. Instead of building an individual predictor for each pitch conditioned on the notes

in the history tensor, we adopt an idea proposed by Johnson [2017]: build a single predictor

that conditions on a shifted version of the history tensor centered around the note we want

to predict. Convolving this predictor over the pitch axis of the history tensor lets us make a

prediction at each note location, as visualized by Figure 4.9. As with time, the distribution

over notes is not quite conditionally stationary. For example, a truly relative predictor would

generate notes uniformly across the note-class axis, whereas the actual distribution of notes

concentrates around middle C. Therefore we augment our history tensor with a one-hot

feature vector 1p that indicates the pitch p for which we are making a prediction. This

allows us to take full advantage of all available information when making a prediction, while

borrowing strength from shared harmonic patterns in different keys or octaves. We compare

absolute pitch-indexed classifiers (linp) to a single, relative pitch classifier (lin) in Table

4.3: compare the loss of pitch models (Lossp) in Experiment groups (2,3,4), (5,6,7), (8,9,10),

(11,12,13), and (15,16) in Table 4.3. Relative pitch models serve a similar purpose to key-

signature normalization Liang et al. [2017] or data augmentation via transposition Hadjeres

et al. [2017]. Building this invariance into the model offers an alternative approach that

avoids data preprocessing or the introduction of hyper-parameters. We find that training

with transpositions in the range ±5 semi-tones yields no performance increase for relative

pitch models.

Pitch embeddings. Borrowing the concept of a word embedding from natural language

processing, we consider learned embeddings c of the pitch vectors rk,1 (ek,v,1 for the multi-

voice models). For recurrent models, we do not see performance benefits to learning these

5Location can always be computed from the full history tensor. But we truncate the history, so this
information is lost unless it is explicitly reintroduced.

103

Params Rhythm Model Notes Model Losst Lossp Losstotal

1 112 r̂k,0 = bias0 r̂k,1,p = bias1,p 2.92 7.15 10.07
2 21k r̂k,0 = lin(r(1)) r̂k,1,p = linp(r(1), r+) 2.00 6.05 8.05
3 9k r̂k,0 = lin(r(1)) r̂k,1,p = lin(r(1), r+) 2.00 4.29 6.29
4 11k r̂k,0 = lin(r(1), `) r̂k,1,p = lin(r(1), r+,1p) 1.83 4.29 6.12
5 149k r̂k,0 = lin ◦ fc(r(1)) r̂k,1,p = linp ◦ fc(r(1), r+) 1.99 3.93 5.92
6 135k r̂k,0 = lin ◦ fc(r(1)) r̂k,1,p = lin ◦ fc(r(1), r+) 1.99 4.07 6.05
7 172k r̂k,0 = lin ◦ fc(r(1), `) r̂k,1,p = lin ◦ fc(r(1), r+,1p) 1.80 3.90 5.70

8 72k r̂k,0 = lin(r(5)) r̂k,1,p = linp(r(5), r+) 1.86 6.05 7.91
9 36k r̂k,0 = lin(r(5)) r̂k,1,p = lin(r(5), r+) 1.86 3.91 5.76

10 38k r̂k,0 = lin(r(5), `) r̂k,1,p = lin(r(5), r+,1p) 1.73 3.91 5.63
11 418k r̂k,0 = lin ◦ fc(r(5)) r̂k,1,p = linp ◦ fc(r(5), r+) 1.64 3.26 4.90
12 497k r̂k,0 = lin ◦ fc(r(5)) r̂k,1,p = lin ◦ fc(r(5), r+) 1.64 3.16 4.80
13 535k r̂k,0 = lin ◦ fc(r(5), `) r̂k,1,p = lin ◦ fc(r(5), r+,1p) 1.59 3.10 4.69
14 228k r̂k,0 = lin ◦ fc(f(r(5)), `) r̂k,1,p = lin ◦ fc(c(r(5)), r+,1p) 1.58 3.05 4.63

15 134k r̂k,0 = lin(r(10)) r̂k,1,p = lin(r(10), r+) 1.83 6.05 7.88
16 71k r̂k,0 = lin(r(10), `) r̂k,1,p = lin(r(10), r+,1p) 1.71 3.83 5.53
17 372k r̂k,0 = lin ◦ fc(f(r(10)), `) r̂k,1,p = lin ◦ fc(c(r(10)), r+,1p) 1.55 3.00 4.55
18 250k r̂k,0 = lin ◦ conv5(f(r(10)), `) r̂k,1,p = lin ◦ conv5(c(r(10)), r+,1p) 1.55 3.01 4.56
19 769k r̂k,0 = lin ◦ conv5,3(f(r(10)), `) r̂k,1,p = lin ◦ conv5,3(c(r(10)), r+,1p) 1.50 2.92 4.42
20 342k r̂k,0 = lin ◦ rnn(r(10), `) r̂k,1,p = lin ◦ rnn(r(10), r+,1p)) 1.48 2.89 4.37
21 283k r̂k,0 = lin ◦ rnn(f(r(10)), `) r̂k,1,p = lin ◦ rnn(c(r(10)), r+,1p)) 1.48 2.88 4.36

22 301k r̂k,0 = lin ◦ rnn(f(r̃(10)), `) r̂k,1,p = lin ◦ rnn(c(r̃(10)), r+,1p)) 1.59 2.93 4.52

Table 4.3: Single-voice (homophonic) results. Loss is the cross-entropy described in Section
4.2.2. Losst and Lossp are the decompositions this loss for the distributions of rk,0 and rk,1
in Equation (4.12). For succinctness, define r(m) ≡ rk−m:k (a truncated history of length k)
and r+ ≡ rk,0⊕ rk,1,1:p (the current frame, masked above pitch p). linp indicates a log-linear
classifier (softmax for r̂k,0 and sigmoid for r̂k,1,p); lin indicates the relative pitch log-linear
classifier; inputs 1p indicate pitch-class features. The inputs ` indicate location features.
fc indicates a fully connected layer. c indicates learned pitch embeddings and f indicates
fixed (octave) embeddings. convk indicates 1d convolution of width k. convk1,k2 indicates
two layers of convolutions (convk1,k2 = convk2 ◦ convk1). rnn indicates a recurrent layer.
All hidden layers are parameterized with 300 nodes. Models were regularized with early
stopping.

embeddings: compare Experiments 20 and 21 in Table 4.3. However, we do find that we

can learn compact embeddings (16 dimensions for the experiments presented in this paper)

without sacrificing performance. Using these embeddings reduces computational cost, and

low dimensional embeddings may be helpful when adapting these models for conditional

104

C#5?

C5?

B4?

A4 B4 A4 D5 A4C5
A4 A4

-2 0 -2 3 -2-1
-2 -2

-3 -1 -3 2 -30
-3 -3

-4 -2 -4 1 -4-1
-4 -4

…

RelativeAbsolute
C#5?

C5?

B4?

Figure 4.9: Left: an absolute pitch predictor uses a distinct model for each pitch-class.
Right: a relative pitch predictor learns a single model and computes a prediction for each
pitch class based on a translated view of the conditional history. For example, an absolute
model predicts the presence or absence of pitch-classes C#5, C5, B4, etc. in the current
event rk (Definition 4.6) given the presence of A4 in the previous event rk−1. In contrast, a
relative model predicts the presence or absence of C#5 given rk−1 contained a note 4 steps
below, C5 given rk−1 contained a note 3 steps below, B4 given rk−1 contained a note 2 steps
below, etc.

sampling tasks using Langevin dynamics (looking ahead to Chapter 5). We also find that

using a 12 dimensional fixed embedding of pitches f, in which we quotient each pitch class

by octave, reduces overfitting for the rhythmic model while preserving predictive accuracy.

Multi-voice models

Using the autoregressive factorization (Equation 4.11) of the run-length serialization given

by Definition 4.5, we now explore ways to capture the correlations between voices in a

full score. We build models of the conditional distributions q(sk,0|s1:k) over note-values

and q(sk,1,p|s1:k, sk,0, sk,1,1:p) over pitch classes, with respective cross-entropy losses Losst and

Lossp. Quantitative results for these experiments are summarized in Table 4.4. The same

structural observations that we made for the single-voice models apply to multi-voice mod-

eling; all multi-voice models considered in this chapter use the three weight-sharing schemes

discussed in the previous section. We also propose an additional weight-sharing opportunity

that is specific to the multi-voice modeling task, voice coupling, which is described at the

end of this section.

The effectiveness of recurrent models for the single-voice modeling task, and representa-

tional considerations (Section 4.2.4, Encoding the History) motivate us to consider extensions

105

+

Figure 4.10: Coupled state estimation of Mozart’s string quartet number 2 in D Major,
K155, movement 1, from measure 1, rendered by the Verovio Humdrum Viewer. A recurrent
network models the state hk,v of each voice v at step k, based on the previous state hk−1,v

and the current content of the voice. Another recurrent network models of the global state gk
of the score at step k based on the previous global state gk−1 and a sum of the current states
of each voice. Subsequent notes (purple) in each voice are predicted using features of the
global state and the state of the relevant voice. See Equations 4.14 for a formal description
of this model.

of the recurrent architecture to capture structure in the multi-voice setting. Figure 4.10 illus-

trates one natural extension of the standard recurrent neural network to multiple, concurrent

voices. The idea is to construct a hierarchical state-based model, where the state of each

part evolves individually, and these states contribute the global evolving state of the score.

Formally,

hk,v(e) ≡ a
(
W>
v hk−1,v(e) +W>

e c (ek,v)
)
,

gk(e) ≡ a

(
W>
g gk−1(e) +W>

hv

∑
u

hk,u(e)

)
.

(4.14)

The first equation describes a standard recurrent neural network that builds a state

estimate hk,v of a voice v at time index k based on transition weights Wv, an input embedding

c, input weights We, and non-linear activation a (we use a ReLU activation). We integrate

the state of each voice (weights Whv) into a global state gk given the previous global state

106

gk−1 (weights Wg). Because voice order is arbitrary in our dataset, we sum (i.e., pool) their

states before feeding them into the global network. At each time k, we use the learned

state of each voice together with the global state to make a note-value prediction: ŝk,0 =

lin(hk,βk(e), gk(e)), where lin is a log-linear classifier. We make pitch predictions ŝk,1,p ∈
{0, 1} using the same architecture. We learn a single, relative-pitch classifier for all multi-

voice experiments (see Section 4.2.4, Relative Pitch). We do not share weights between the

note-value and pitch models.

An alternate extension of a recurrent voice model to scores directly integrates the state

of the other voices’ states into each individual voice’s state, resulting in a distributed state

architecture

hk,v(e) = a

(
W>
v hk−1,v(e) +W>

x c (ek,v) +W T
hv

∑
u

hk,u(e)

)
. (4.15)

At each time k, for each voice v, we use the learned state of voice v to make a note-value

prediction ŝk,0 = lin(hk,βk(e)), where lin is a log-linear classifier. We make predictions for

ŝk,1,n ∈ {0, 1} using the same architecture and again we do not share weights between the

note-value and pitch models.

We find that the distributed architecture underperforms the hierarchical architecture (see

Table 4.4; Experiments 2 and 3) although the difference is not so extreme that we should

consider this result conclusive. For the hierarchical model, we can consider whether the

global state representation is as sensitive to history-length as the voices. Could we make

successful predictions using only the final state of each voice, rather than coupling the states

at each step? Experiment group (4,5,6) in Table 4.4 suggests that this is not the case: we

observe significant gains by integrating voice information at each time step.

Voice coupling. Decomposing a score into multiple voices presents us with an opportu-

nity to share weights between voice models by learning a single set of weights Wv in Equation

(4.14), rather than learning unique voice-indexed weights Wvi for each voice vi. Indeed, be-

cause voice indices are arbitrary, the weights Wvi will converge to the same values for all i;

107

History Architecture Loss Losst Lossp
(voice/global) (total) (time) (notes)

1 3 / 3 hierarchical 14.05 5.65 8.40
2 5 / 5 hierarchical 13.40 5.35 8.04
3 5 distributed 13.82 5.41 8.41
4 10 / 1 hierarchical 13.20 5.22 7.98
5 10 / 5 hierarchical 12.94 5.13 7.81
6 10 / 10 hierarchical 12.87 5.12 7.75
7 20 / 20 hierarchical 12.78 5.01 7.76

8 10 independent 18.63 6.56 12.08

Table 4.4: Multi-voice (polyphonic) results. Loss is the cross-entropy described in Sec-
tion 4.2.2. Losst and Lossp are decompose this loss into contributions from the models
of q(sk,0|s1:k) and q(sk,1,p|s1:k, sk,0, sk,1,1:p) respectively (using the factorization described by
Equation (4.13)). The hierarchical architecture is defined by Equations (4.14). The dis-
tributed architecture is defined by Equation (4.15). Voice and global history refer to the
number of time steps used to construct the states hk,v and gk respectively. Experiment 8 is a
baseline where the voice models are completely decoupled (equivalent to single-voice Exper-
iment 22 in Table 4.3; the average number of voices per score is 4.12). Results are reported
on non-piano test set data (see the discussion of Homophonic Run-Length Serializations in
Section 4.2.3).

sharing a single set of weights Wv accelerates learning by enforcing this property. All score

models presented in Table 4.4 share these weights. Extending a loose analogy between recur-

rent neural networks and hidden Markov models, the coupled recurrent models considered in

this section can be compared to factorial hidden Markov models [Ghahramani and Jordan,

1995]. A crucial distinction is that the distributed latent state of a coupled recurrent model

is determined by the distributed input structure of a score, whereas the distributed structure

of a factorial hmm only appears in the latent state.

4.2.5 Revisiting Evaluation of Generative Models

In Section 4.2.4 we studied a variety of neural architectures for modeling musical scores

under the cross entropy metric developed in Section 4.2.2. This allowed us to compare the

relative performance of a wide variety of models, but doesn’t offer much insight into their

108

quality in an absolute sense. In this section, we present the results of a user study, which

seeks to quantify the absolute performance of one of our best models: Experiment 6 in Table

4.4. We conclude with an open-ended discussion about techniques for evaluating generative

models of symbolic music. Better methodology is clearly needed, but the path forward is

unclear. We contrast the current state of evaluation in the music domain with more mature

evaluation methodology in the vision and language domains.

A User Study

To gain insight into the quality of samples from our models, we recruited twenty study

participants from the Computer Science and Engineering graduate program at the University

of Washington. Participants were asked to listen to a variety of audio clips, each synthesized

from either a real composition or from generated scores sampled using the model presented in

Experiment 6 in Table 4.4. Our models do not predict tempo, so each score was synthesized

at a tempo of 120bpm. For each clip, participants were asked to judge whether the clip was

written by a computer or by a human composer, following a procedure comparable to Pearce

and Wiggins [2001]. Each participant was asked to listen to 5 sets of 10 audio clips, which

varied in length from a 10-index slice of the run-length encoded score tensor e (2-4 seconds;

the length of history conditioned on by the model) to a 50-index slice of the score tensor

(10-20 seconds). Each participant was presented with their own set of audio clips, randomly

sampled from either the training data or generated output from the model.

We also asked the participants to identify if they recognized a specific audio clip, because

we were concerned that knowledge of the classical music canon could confound the model’s

ability to fool a human. Despite several of our study participants having extensive musical

training, only one user reported recognition of a single clip in our study. This may be partially

explained because our models do not predict tempo; performing each score at 120bpm could

obscure otherwise recognizable pieces. However, this also highlights a limitation of this

study, because all audio clips (real or artificial) could sound foreign when normalized to

this common tempo. Participants were informed of the tempo normalization, but it is not

109

clear how and to what extent they were able to act upon this knowledge when making their

judgements.

Users were given the following prompt before beginning the study:

This is a musical Turing test. You will be presented with a selection of audio

clips, beginning with short clips and progressing to longer clips. For each audio

clip, you will be asked whether you believe the clip was composed by a human or a

computer. Half the clips you will be presented with belong in each category. This

data contains many famous classical compositions, ranging from the Renaissance

to early 20th century. If you specifically recognize a piece, please let me know.

Finally, all recordings you hear–both human and artificial–are performed at a

tempo of 120bpm.

Additionally, we asked users two questions about their background:

• Do you self-identify as musically educated? (8 responded ‘yes’)

• Do you self-identify as educated in machine learning? (13 responded ‘yes’)

Table 4.5 summarizes the results of this listening study, including conditional results for the

educated subgroups. Participants become more confident in their judgements of the longer

clips, but even among the longest clips (around 20 seconds) participants often identified

an artificial clip as a human composition. These results superficially suggest that we have

done well in modeling the short-term structure scores (we make no claims to have captured

long-term structure; indeed, the truncated history input to our models precludes this).

Concluding Thoughts on Evaluation Methodology

In Sections 4.2.4 and 4.2.5, we have attempted to evaluate generative models from two per-

spectives: an automated cross-entropy metric and a user study. User studies are sometimes

considered a gold standard for evaluation, but it unclear whether humans are good at evalu-

ating the outputs of a generative model. In the music domain, see Pearce and Wiggins [2007],

110

Length 10 20 30 40 50

All 5.3 5.7 6.6 6.7 6.8
Music 4.9 6.0 6.4 6.9 7.0
ML 4.8 5.5 6.2 6.7 6.8

Table 4.5: Qualitative evaluation of a hierarchical model conditioned on 10 steps of history:
Experiment 6 in Table 4.4. Twenty participants were asked to judge 50 audio clips of
varying length (where length indicates a number of time indices in the score tensor e; see
Definition 4.5). The scores indicate participants’ average correct discriminations out of
10 (5.0 would indicate random guessing; 10.0 would indicate perfect discrimination). The
categories indicate breakdowns for listeners who identified as educated in music or educated
in machine learning.

Jordanous [2012] for criticism of musical Turing tests like the one presented here. One per-

spective on this problem is that, while humans are generally good at rejecting implausible

compositions, they may not properly penalize a model that lacks creativity or diversity of

outputs [Hashimoto et al., 2019]. The foreign sounds of synthesis and tempo-normalization

introduced by the user study presented here magnify the fallibility of human judgement.

One possible way forward is demonstrated by the computer vision community, which has

made tremendous advances in generative modeling using automated metrics. In particular,

the Inception Distance [Salimans et al., 2016] and Frechet Inception Score [Heusel et al.,

2017] are regularly reported on standardized CIFAR-10 [Krizhevsky, 2009] and ImageNet

[Krizhevsky et al., 2012] test sets. Because these scores are completely automated they

can be compared across papers, fostering competition where teams of researchers strive

outperform each others’ best efforts. In contrast, user studies generally require head-to-head

comparisons, so the same team that invents a new method is also responsible for running the

study that compares it to previous work; this creates perverse incentives, even for the most

ethical researcher. The language modeling community has also begun to focus on automated

metrics, with recent demonstrations that aggressive minimization of a cross-entropy metric

leads to qualitatively strong language generation results [Radford et al., 2019, Brown et al.,

2020].

111

Unfortunately, it may be difficult for the symbolic music modeling community to follow

the lead of the vision and language communities using automated metrics. The problem is

that there are no standardized corpora on which to report metrics. The best current example

of a standardized corpus is the Bach chorales dataset, but even with this dataset differences

in discretization make cross-entropy comparisons across papers difficult [Huang et al., 2017].

Furthermore, the richness of musical scores works against us: if one work models tempo but

not dynamics, and another models dynamics but not tempo, it is difficult to imagine an

automated metric (or a user study) that can compare between them. Not only are there

no standard datasets, there is no self-contained vocabulary for musical scores. The commu-

nity cannot even agree on a vocabulary of pitches: most work encodes pitch using 12-tone

equal temperament, but others encode note names (e.g., F] or G[) that distinguish between

enharmonic equivalents [Hadjeres et al., 2017]. In this sense, the music community faces

similar challenges to the language community discussed in Section 4.1.4, which have been

resolved by adopting subword tokenizations that can encode any unicode text, in contrast

to open-ended word-based vocabularies. But it is unclear what the musical analog to an

alphabet of characters would be.

4.3 Classification Models for Musical Scores

In this section, we turn our attention from generative models to discriminative, classification

models. We focus in particular on a composer attribution task: predicting the composer of

a given score. Before attending to the details of this task, we ought to ask: why should we

care about this task? Nearly every musical score has composer metadata attached. And in

rare cases where this information has been lost, a thoughtful (and interpretable) scholarly

musicological analysis is likely to be more interesting than the prediction of a black-box

classifier. In light of this, we motivate the composer attribution task in two ways: (1) it is an

archetypical example of a discriminative modeling task for musical scores, with unambiguous

labels, and (2) an end-to-end, differentiable neural classifier can be useful tool for guiding a

posterior sampler, using the methods proposed in Chapter 5.

112

Models for attributing composers to musical scores have been extensively studied in the

music information retrieval community. The composer classification question has been posed

for a variety of corpora, from Renaissance composers [Buzzanca, 2002, Brinkman et al., 2016],

to the narrow (and challenging) case of Haydn and Mozart string quartets [Hillewaere et al.,

2010, Herlands et al., 2014, Van Kranenburg and Backer, 2005, Kempfert and Wong, 2020],

and to various collections of classical era compositions (most of the other papers discussed in

Section 4.3.1). In this work we study an expansive collection of scores, described in Section

4.3.2, from 13th century sacred music by Guillaume Du Fay to 20th century ragtimes by

Scott Joplin.

A major challenge for the composer attribution task is learning from limited data. While

the corpus considered here is larger than most, this is mostly due to the number of composers

considered (19): for specific composers, we have at most 466 scores (Bach) and as few as

22 (Japart). Small datasets are an inherent challenge for composer attribution: the corpus

used in this work contains, for example, all of the Bach chorales and all of the Mozart

string quartets. We cannot resurrect these composers and have them write us more scores to

include in our corpus. This situation contrasts starkly with many learning problems, where

substantial progress can be made by collecting massive datasets and exhaustively training

an expressive model (usually a deep neural network) with “big data.” Further complicating

this task, an individual score is itself a high dimensional object: the average score in our

corpus consists of thousands of notes, each of which is encoded as a high dimensional vector

to represent its pitch and value. Learning from a small number of examples in a high

dimensional space is a formidable problem; thus much work on composer classification focuses

on feature engineering, feature selection, dimensionality reduction, or some combination of

these approaches to construct low-dimensional representations of scores to learn from.

In this work we take a different approach: we dispense with feature engineering and

explore end-to-end classifiers that operate directly on scores (Section 4.3.4). Specifically,

we investigate shallow convolutional neural networks with an aggressive pooling operation.

In this setting, all but the most impoverished linear classifiers achieve 100% training accu-

113

racy. We rely on implicit regularization introduced by the network structure and first-order

optimization with early stopping to avoid overfitting to training data. While theoretical un-

derstanding of such an approach is in its early stages [Soudry et al., 2018], we find empirically

that this works quite well for composer attribution (Section 4.3.5).

4.3.1 Related Work

The earliest work on composer classification analyzed highly preprocessed corpora of melodic

fragments [Pollastri and Simoncelli, 2001, Buzzanca, 2002]. Much of the subsequent work

focuses on engineering features to summarize full scores. These approaches can be broadly

categorized, using terminology introduced by Hillewaere et al. [2009], into “global” summa-

rization approaches which compute small sets of summary statistics as a feature set for each

score [Van Kranenburg and Backer, 2005, Kaliakatsos-Papakostas et al., 2010, Herlands et al.,

2014, Herremans et al., 2016, Sadeghian et al., 2017, Kempfert and Wong, 2020, Brinkman

et al., 2016] and local “event” featurizations which extract n-gram counts of a score as fea-

tures [Wo lkowicz et al., 2008, Hillewaere et al., 2010, Kaliakatsos-Papakostas et al., 2011,

Hontanilla et al., 2013, Wolkowicz and Keselj, 2013]. There is also a line of work that applies

compression-based dissimilarity metrics [Anan et al., 2012, Takamoto et al., 2016, 2018] to

this task, which offers a substantially different perspective on classification problems. Our

work can be seen as a unified framework for learning global and event features. In Section

4.3.4 we will draw analogies between linear convolutional filters and n-gram features, and

also demonstrate how convolutional models can express many popular global features. We

also introduce a global pooling operation that can be interpreted as an counter that tracks

the number of occurrences of learned features, which is directly analogous to the count and

ratio statistics that comprise the bulk of metrics used in human-engineered featurizations.

The present work is most similar in spirit to Buzzanca [2002] and Velarde et al. [2016].

Following Buzzanca [2002], we adopt an end-to-end approach to feature learning using neural

architectures. In contrast with Buzzanca [2002], we learn on full scores with minimal prepro-

cessing and consider a multi-class classification task over a broad variety of composers; this

114

approach is made possible by modern hardware unavailable to researchers in 2002. We also

take a more systematic approach to architecture exploration, and identify effective archi-

tectures that are simpler than hybrid convolutional-recurrent approach taken by Buzzanca

[2002]. Like Velarde et al. [2016], we exploit structure in musical scores using convolutional

models. But where Velarde et al. [2016] use a fixed Morlet or Gaussian convolution filters,

the convolutional filters in this work are parameterized and learned from the data to max-

imize classification accuracy. We also explore multi-layer “deep” convolutional models and

demonstrate improvements using such architectures versus the single layer of convolutions

explored by Velarde et al. [2016].

4.3.2 Corpus and Data Representation

We train and evaluate models on a corpus of 2,500 scores spanning five centuries of choral,

piano, and chamber compositions from the KernScores collection ([Sapp, 2005]; see Section

4.1.2 for an example of the Humdrum encoding used by KernScores). An overview of this

collection is provided in Table 4.6. In this work, we consider each movement of a multi-

movement composition to be a distinct score. Our models extract only the note data (pitch,

note-value, and voicing) from scores, ignoring all other markings such as time signatures, key

signatures, tempo markings, instrumentation, and movement names. For the Renaissance

composers in this collection (Du Fay through Japart) we shorten the length of all note-values

by a factor of 4 to crudely account for the shift in duration conventions between mensural

and modern notation [Cumming, 2000].

We represent a score by lossless encoding of its pitch, voice, and note-value contents,

transliterated from a Humdrum file to a binary representation suitable for input to a neural

network.

Definition 4.8. A transliterated Humdrum score of length L, consisting of V voices, with N

distinct pitch classes and D distinct note-values is a binary tensor w ∈ {0, 1}L×V×(N+D+1)

115

such that

wk,v,n = 1 if pitch n occurs at row (time index) k in column (voice index) v, (4.16)

wk,v,N+d = 1 if note-value d occurs at row k in column v, (4.17)

wk,v,N+D = 1 if notes continue at row k in column v. (4.18)

For the KernScores corpus used in this work, N = 78 and D = 55.

It may be helpful to compare this encoding w with the run-length encoding r described

in Section 4.2.3, Definition 4.5. Definition 4.8 more faithfully transliterates the Humdrum

format described in Section 4.1.2. In contrast to run-length encoding r, which explicitly

encodes the length of elapsed time between each index k and k + 1, the encoding w instead

explicitly encodes the durations of notes. In the w-encoding, run-lengths are implicit: the

elapsed time between wk and wk+1 can be calculated as the distance between the time at

wk and the minimum end-time of all active notes in the score at time k (end-times can be

calculated because the durations of notes are explicitly encoded in w. In contrast, for the

run-length encoding r, the duration of a note is implicit but this durations can be calculated

by summing the run-lengths of the time indices it spans.

As we saw in Section 4.2, converting from Humdrum text to a structured tensor encoding

allows us to exploit structure in musical scores. In Section 4.3.4, we will use this structure to

write convolution operations along the time and pitch axes of the data tensor w. Encoding

pitches with binary indicators in N -dimensional vectors is consistent with piano roll repre-

sentations [Velarde et al., 2016] but departs from the example of Buzzanca [2002], which

encodes pitch as a single numerical magnitude. The binary pitch encoding is required to

support convolutions along the pitch domain, which we will introduce later in the models

defined by Equations (4.27) and (4.28).

Binary note-value encoding also differs from the numerical magnitude encoding used by

Buzzanca [2002]. We will not introduce models that convolve over durations (there is no

translation invariant structure to exploit) so the motivation above for representing pitches

116

Composer Dates Sub-Collection Scores

Du Fay 1397-1474 Choral 35
Ockeghem 1410-1497 Choral 98
Busnois 1430-1492 Choral 68
Martini 1440-1497 Choral 122
Compere 1445-1518 Choral 27
Josquin 1450-1521 Choral 423
de la Rue 1452-1518 Choral 178
Orto 1460-1529 Choral 43
Japart 1474-1507 Choral 22
Corelli 1653-1713 Trio Sonatas 188
Vivaldi 1678-1741 Concertos 33
Bach 1685-1750 Chorales 370

Well-Tempered Clavier 96
D. Scarlatti 1685-1757 Keyboard Sonatas 59
Haydn 1732-1809 String Quartets 209
Mozart 1756-1791 Piano Sonatas 69

String Quartets 82
Beethoven 1770-1827 Piano Sonatas 102

String Quartets 67
Hummel 1778-1837 Preludes 24
Chopin 1810-1849 Preludes and Mazurkas 76
Joplin 1868-1917 Ragtimes 47

Table 4.6: Details of the KernScores collection used for training and evaluation in this paper.

with indicators does not apply to durations. Rather, we are motivated by the observation

that note-values of similar duration may not be more alike in any musical sense than note-

values with less similar duration. We avoid imposing this notion of similarity a-priori by

encoding durations as categorical indicators: in this encoding, all note-values are equally

distant in the Euclidean sense. We also contrast our note-value encodings with piano roll

representations, such as the representation used by Velarde et al. [2016]. In a piano roll

representation, time is discretized: the value of a note is indicated implicitly by the number

of discrete time-slices over which it is sustained. We choose an explicit representation of

note-values because it more directly reflects the contents of a written score, and results in

shorter time series overall than discretized representations.

117

4.3.3 A Composer Attribution Task

Our aim is to learn a classifier that predicts a composer y given a score w encoded according

to Definition 4.8. There are C ≡ 19 composers in our corpus, and we assign each composer

a label from 1 to C. We will construct a model fθ : S → RC that assigns vector fθ(w) to a

score w where each component fθ(w)i indicates the model’s (un-normalized) confidence that

composer i wrote score w. We predict ŷθ(w) ≡ arg maxi fθ(w)i, the composer the model has

most confidence in.

We evaluate our models via accuracy on holdout sets wholdout, where accuracy is the

zero-one loss defined by

Accuracy(wholdout) =
1

n

n∑
i=1

1(ŷθ(w
holdout
i) = yi). (4.19)

Here 1 : Bool → {0, 1} is the indicator function: 1(p) = 1 if the proposition p is true,

otherwise 1(p) = 0. The results in Section 4.3.5 report 10-fold cross-validated accuracies. It

is standard practice in the machine learning community to report results on a single holdout

set. But for for the small datasets considered in composer attribution, cross-validation is

essential to reduce the variance of estimated accuracy.

Given a collection of labeled scores (training data) {(w1, y1), . . . , (wn, yn)} and a param-

eterized family of models {fθ : θ ∈ Θ} we learn an optimal model fθ by empirical risk

minimization of the negative log-likelihood under a softmax-normalized probability distribu-

tion of model outputs:

min
θ∈Θ

n∑
i=1

− log

(
exp(fθ(wi)yi)∑C
k=1 exp(fθ(wi)yk)

)
. (4.20)

For each of iteration of 10-fold cross-validation, in addition to the holdout fold wholdout, we

hold out a second fold as validation data and optimize the objective (4.20) on the remaining

8 folds. We train our models using the Adam optimizer [Kingma and Ba, 2015], regularizing

118

with retrospective early stopping at the point with best accuracy on the validation fold.

4.3.4 Model Architectures

Every model class fθ proposed in this work uses the following general template:

1. Compute a set of local features at or around each time index in the score.

2. Average these features across time (“pool” the features, in neural networks parlance)

into a single global feature vector.

3. Construct a linear classifier on top of this global feature vector to predict the composer

of the score.

This approach is motivated by the need to manage the high-dimensionality of a score: given

even the first 5 indices of the score tensor w described in Section 4.3.2, we can easily fit

a classifier that achieves 100% training accuracy but fails to generalize to new data. As

discussed in Section 4.3.1, the classical approach to this overfitting phenomenon is to reduce

a score to a low-dimensional summary of pre-determined features and fit a classifier to this

summary. The present work aims to learn features from scratch, but if we permit our model

to learn any features it wants then it will simply overfit to the training data.

We therefore regularize our models in two ways. First, Step 1 of the general template

above limits our model to learn features that are local in scope. We will allow our models

to learn features that are sensitive to correlations between co-occurring notes (harmony), or

between short sequences of notes (melody, rhythm). But by construction, our models will

not be able to learn features that capture correlations between (for example) the first and

last notes of a score. This precludes us from learning certain high-level patterns that could

have predictive power (e.g., Mozart is more likely to repeat a section verbatim than Bach)

but saves of us from learning a multitude of spurious patterns that may appear to have

predictive power on the training data but fail to generalize to new observations. Second,

119

Sample Size
Model 10 20 50 100 250 500

Histogram (Equation 4.21) 50.0 59.0 62.0 63.0 66.1 64.2
Voices (Equation 4.24) 60.0 61.6 63.9 72.0 75.5 76.9
Hybrid (Equation 4.28) 59.3 62.1 68.9 77.1 79.9 81.7

Table 4.7: Comparison of model accuracies at various samples sizes: accuracy increases
uniformly with sample size. See the referenced equations for formal model definitions.

Step 2 of the general template prevents our model from overfitting to features that occur at

fixed time locations. As discussed above, even knowing the first 5 indices of the score tensor

is enough to easily identify every score in the training data. By pooling features together

across time, we force our models to classify based on the overall prevalence of the features it

learns, rather than the occurrence of a particular feature at a particular time.

Classical approaches to feature engineering largely follow the same modeling restrictions

proposed in this template. The features used by e.g., Herremans et al. [2016] (Table 1,

Page 7) or Brinkman et al. [2016] (Table 1, Page 2) consist primarily of overall frequencies,

prevalences, and rates of occurrence. These features capture properties of either a single

time index or short sequences, aggregated across an entire score. The use of n-gram features

also fits this mold: an n-gram is by definition a local feature of n time indices, and an n-gram

featurization computes aggregate (i.e., pooled) counts of the occurrences of each particular

n-gram across a score. Non-local features are used by Kempfert and Wong [2020], e.g., the

“maximum fraction of overlap with opening material within first half of movement.” The

use of these features may account for the effectiveness of Kempfert and Wong [2020] in the

Haydn versus Mozart classification task, which our models underperform on.

Sub-sampling Scores

The approach outlined above requires us to average features across entire scores. Each

score in the KernScores corpus (Section 4.3.2) has a unique length, ranging from 10 to 4000

time indices. As a practical matter, it is difficult to deal with such variable-length data

120

in machine-learning systems; our tools are designed to operate efficiently on homogeneous

batches of data. One solution to this problem is to sub-sample scores; for example Velarde

et al. [2016] train models on the first s quarter notes where s = 70 or s = 400. That work

found that the larger sample consistently outperforms the smaller one. We confirm this

finding with the experiments in Table 4.7, which show that our models consistently perform

better with larger samples of the score.

We therefore make the following compromise between using all available information from

a score and operating on homogeneous inputs: we sample the first s, middle s, and last s

indices from our score w, resulting in 3s time indices sampled from each score. We use

s = 500 for all experiments except the experiments in Table 4.7 that explore how models

behave as we vary this hyperparameter. The average score in the KernScores corpus has

534 time indices, so for most scores this means we sample the entire score (for scores shorter

than 500 time indices we pad out our sample with zeros). Only for scores longer than 1, 500

time indices (there are 117 in our corpus) do we lose any information with this approach.

Histogram Models

The simplest models we consider are histogram models. Averaging the input data w over

voices and time gives us a histogram vector h ∈ {0, 1}N+D+1:

h(w) =
1

TP

T∑
t=1

P∑
p=1

wt,p.

Multiplying this histogram by a weight matrix Wθ ∈ R(N+D+1)×C with parameterized entries

gives us a simple linear model:

fθ(w) = W>
θ h(w). (4.21)

No features are learned in this model; all that is learned are the linear weights Wθ on the

histogram features. The model can be interpreted as a simplified version of the global feature

models discussed in Section 4.3.1. In this case, the global features are the prevalences at

121

which each of the N +D + 1 note and duration symbols occur in a score.

Voice Convolutional Models

We now consider a simple neural model inspired by n-gram features. Let k be a number

of features we desire to learn and n be a number of time indices. Define the function

relu : R→ R by t 7→ t1(t > 0). Given a weight matrix W 1
θ ∈ Rn(N+D+1)×k we can construct

a “convolutional” feature representation ht,p ∈ RT×P×k at each time index t in each voice p

defined by

ht,p(w; θ) = relu
(
(W 1

θ)>wt:t+n,p

)
. (4.22)

We define wt:t+n to be a slice of w from index t to index t+n (non-inclusive); when t+n > T ,

we pad w with zeros. We then pool these features across voices and time to construct a single,

global feature representation h ∈ Rk, to which we can apply a linear classifier with weights

Wθ ∈ Rk×C :

h(w; θ) =
1

TP

T∑
t=1

P∑
p=1

ht,p(w; θ),

fθ(w) = (Wθ)
>h(w; θ).

(4.23)

This is a non-linear model (because of the non-linear relu “activation”) and we can view h as

a learned feature representation of the score w. The weights (“filters”) W 1
θ learn to extract

k relevant patterns of length n from voices, analogous to—but more expressive and compact

than—classical n-gram featurizations. In our experiments we set k = 500 and n = 3; the

choice of n is consistent with the pervasive use of 3-grams features in prior work [Hillewaere

et al., 2010, Hontanilla et al., 2013, Wolkowicz and Keselj, 2013, Kempfert and Wong, 2020].

Deeper Representations

A natural way to extend the convolutional feature extraction discussed in Section 4.3.4 is to

stack multiple layers of convolutions. Given the feature representation ht,p given by Equation

122

4.22 and a parameterized weight tensor W 2
θ ∈ Rnk1×k2 , we can construct a second layer of

features

h2
t,p(w; θ) = relu

(
(W 2

θ)>ht:t+n,p(w; θ)
)
.

We can loosely interpret such a representation as building hierarchical features of features. In

principle we can build arbitrarily deep stacks of features in this way; in our experiments, we

were unable to realize significant gains using architectures with more than two convolutional

layers. Building a classifier over these features proceeds identically to the shallower models:

hconv(w; θ) =
1

TP

T∑
t=1

P∑
p=1

h2
t,p(w; θ)

fθ(x) = (Wθ)
>hconv(w; θ).

(4.24)

For this model we set n = 3, k = 300, and k2 = 300. Of course it is possible to stack

more layers of convolutions following this pattern, but we were unable to achieve strong

performance in our experiments using deeper representations.

Full-Score Convolutional Models

The models described in Equations (4.23) and (4.24) are largely monophonic: they extract

features from individual voices (although they classify the score based on a pool of features

gathered from all the voices). Notably, those models have no ability to capture harmonic

patterns in the interactions between voices. We now consider a model that can capture these

interactions. Let W 1
θ ∈ RnP (N+D+1)×k, W 2

θ ∈ Rnk×k2 and consider the model

ht(w; θ) = relu
(
(W 1

θ)>wt:t+n

)
∈ RT×k,

h2
t (w; θ) = relu

(
(W 1

θ)>ht:t+n
)
∈ RT×k2,

h(w; θ) =
1

T

T∑
t=1

h2
t (w; θ),

fθ(w) = (Wθ)
>h(w; θ).

(4.25)

123

We parameterize this model with n = 3, k = 300 and k2 = 300. This model is strictly more

expressive than the part-wise models (4.23) or (4.24), capable of capturing patterns that the

part models can’t. However, looking ahead to Section 4.3.5, the underperformance of this

model (4.25) relative to less expressive models (4.23) and (4.24) suggests that it is prone to

capture spurious patterns, leading to overfitting (see results in Table 4.8).

Harmonic Models

All the models considered so far treat pitch classes as categorical data. We recognize, for

example, that C4 is distinct from E4 or G4, but not that C4 is 4 semi-tones below E4 and 7

semi-tones below G4. We now consider a model that exploits this structural order of pitch-

classes, by convolving along the pitch-axis of the input tensor. For notational convenience,

we decompose the input tensor w = f ⊕ d into separate pitch components f ∈ {0, 1}T×P×N

and note-value components d ∈ {0, 1}T×P×(D+1). Let W 1
θ ∈ RjP×k and convolve along the

pitch-axis to construct a features ht,n(f; θ) ∈ RT×N×k:

ht,u(f; θ) = relu
(
(W 1

θ)>ft,:,u:u+j

)
.

Here j is a hyper-parameter indicating the height of the convolution; analogous to the width-

n hyperparameter in our time-domain convolutions for models (4.23), (4.24), and (4.25).

Unlike the time domain, we find that setting a large value of j (in our models, j = N/2) is

desirable; a similar parameterization is used for frequency-domain convolutions in Chapter 3,

Section 3.3.5.

We proceed to pool the features ht,u together across the pitch domain to construct ht ∈
RT×k:

ht(f; θ) =
1

N

N∑
u=1

ht,u(f, θ). (4.26)

The idea of this pooling is to construct a feature-set that is invariant to pitch translation.

We are interested in learning features such as, for example, the occurrence of general major

124

chords rather than the occurrence of a particular major chord, such as the one rooted at

A3. The pooling operation above precludes us from learning the latter type of feature.

We then construct a second layer of features to integrate the harmonic features ht together

with the note-value features dt. Using weights W 2
θ ∈ Rk×k2 and W 3

θ ∈ R(D+1)×k2 we build

h2
t (w; θ) ∈ RT×k2 . We then pool the representations h2

t across time and construct a linear

classifier on the resulting representation:

h2
t (w; θ) = relu

(
(W 2

θ)>ht(f; θ) + (W 3
θ)>dt

)
,

hharmonic(w; θ) =
1

T

T∑
t=1

h2
t (w; θ),

fθ(w) = (Wθ)
>hharmonic(w; θ).

(4.27)

We parameterize this model with k = 64 and k2 = 500.

Hybrid Models

Looking back at the models we’ve introduced, observe that the voice models (4.23) and

(4.24) exploit temporal structure within voices, but pool away any harmonic patterns be-

tween voices. In contrast, the harmonic model (4.27) exploits harmony between voices but

pools away any sequential patterns across time indices. The full-score convolutional model

can capture both types of structure, but is prone to capture spurious patterns and overfit.

This motivates the introduction of our final, hybrid model that weakly combines temporal

and harmonic models to increase predictive power without overfitting. The idea is to feed

the input tensor separately through temporal and harmonic models to construct features

representations hconv (4.24) and hharmonic (4.27) respectively. We combine these features in a

final, linear layer using weights W c
θ ∈ Rk2×C and W h

θ ∈ Rk2×C to make a prediction:

fθ(w) = (W c
θ)>hconv(w; θ) + (W h

θ)>hharmonic(w; θ). (4.28)

125

Models

Composer (4.21) (4.23) (4.24) (4.25) (4.27) (4.28)

Japart 0.0 13.6 13.6 9.1 18.2 13.6
Hummel 41.7 54.2 66.7 62.5 87.5 91.7
Compere 0.0 25.9 22.2 25.9 40.7 37.0
Vivaldi 30.3 94.4 91.6 54.5 45.5 54.5
Du Fay 45.7 82.9 74.3 71.4 80.0 74.3
Orto 0.0 18.6 37.2 25.6 46.5 48.8
Joplin 85.1 91.5 93.6 93.6 95.7 91.5
D. Scarlatti 44.1 59.3 62.7 78.0 79.7 72.9
Busnois 13.2 48.5 48.5 51.5 60.3 60.3
Chopin 55.3 54.2 64.5 72.4 76.3 68.4
Ockeghem 13.3 55.1 69.4 52.0 66.3 72.4
Martini 44.3 68.0 75.4 59.8 68.0 73.8
Mozart 34.8 56.3 61.6 63.6 70.2 67.5
Beethoven 72.2 82.2 83.4 78.7 84.0 89.3
de la Rue 27.5 57.9 71.3 63.5 73.6 79.2
Corelli 89.4 89.9 86.2 93.1 93.6 95.2
Haydn 85.6 75.6 71.3 79.9 82.3 83.7
Josquin 81.1 78.7 76.4 75.9 77.3 82.3
Bach 92.3 95.7 96.1 97.2 97.2 97.6

Overall 64.2 75.4 76.9 75.5 79.8 81.7

Table 4.8: Results of the 19-way classification problem on the full corpus for each model
considered in this work. Reported results are percent accuracy, as defined by Equation
(4.19), calculated using the 10-fold cross-validation procedure described in Section 4.3.3.

Because temporal and harmonic information are only combined in the final linear layer, this

model is unable to learn expressive relationships between these features, such as the classical

XOR relationship Minsky and Papert [1987]. As we see in Table 4.8, this combination

increases accuracy over either the temporal or harmonic models on their own.

4.3.5 Results and Conclusions

The results for all models discussed in this paper, evaluated on the full corpus using the

cross-validation procedure described in Section 4.3.3, are presented in Table 4.8. We sort the

126

Bach Orto Fay Ock. Josq. Rue

Bach 370 0 0 0 0 0
Orto 0 17 0 3 22 1
Du Fay 0 0 29 4 2 0
Ockegham 0 2 5 80 9 2
Josquin 3 6 5 14 357 38
de la Rue 2 0 0 1 46 129

Model Bach Orto Fay Ock. Josq. Rue

Hybrid (Equation (4.28)) 100.0 39.5 82.9 81.6 84.4 72.5
KNN [Brinkman et al., 2016] 94.5 38.9 42.9 70.0 60.6 80.6
SVM [Brinkman et al., 2016] 98.5 33.3 25.0 60.0 60.0 87.1

Table 4.9: (Top) Confusion matrix for the hybrid model defined by Equation (4.28), trained
and evaluated on a 6-composer subset of the corpus; rows indicate the true composer and
columns indicate the model’s prediction. Compare to the results in Tables 3 and 4 (page
6) of Brinkman et al. [2016]. (Bottom) Accuracy (Equation (4.19)) of our hybrid model
comparisoned to the KNN and SVM models from Brinkman et al. [2016].

rows in this table by the number of scores for each composer; we observe a trend towards

increasing accuracy when we have more data (with some outliers).

To compare with previous work, we train additional models on subsets of the corpus. We

invite comparisons between the results in Table 4.9 and the results of Brinkman et al. [2016],

and between the results in Table 4.10 and the results of Herremans et al. [2016]. These

comparisons are imperfect: neither Brinkman et al. [2016] nor Herremans et al. [2016] report

the precise scores used in their experiments. Nevertheless our corpus is derived from the

same KernScores sources as Brinkman et al. [2016] and Herremans et al. [2016], and contains

a comparable number of scores to the counts reported by Herremans et al. [2016]. Therefore

we believe our subsets are similar to the corpora used in these works and that comparison is

meaningful. For future reference, the exact dataset used for the present work can be found

online.6

6http://homes.cs.washington.edu/~thickstn/ismir2019classification/

http://homes.cs.washington.edu/~thickstn/ismir2019classification/

127

Bach Haydn Beethoven

Bach 369 1 0
Haydn 7 195 7

Beethoven 5 18 146

Model Bach Haydn Beethoven

Hybrid (Equation (4.28)) 99.8 93.3 86.4
SVM [Herremans et al., 2016] 94.6 80.3 64.8

Table 4.10: (Top) Confusion matrix for the hybrid model (4.28), trained and evaluated on a
3-composer subset of the corpus; rows indicate the true composer and columns indicate the
model’s prediction. Compare to the results in Table 9 (page 18) of Herremans et al. [2016].
(Bottom) Accuracy (Equation (4.19)) comparisons of our hybrid model to the SVM model
from Herremans et al. [2016].

For the popular Haydn versus Mozart string quartet classification task [Hillewaere et al.,

2010, Herlands et al., 2014, Van Kranenburg and Backer, 2005, Kempfert and Wong, 2020],

we were unsuccessful. The standard evaluation metric for this task is LOOCV, which we

could not perform due to the computational expense of our models. With 10-fold cross

validation, we observed exceedingly high variance upon repeat optimizations of the same

model. However none of our optimizations exceeded 80%. Due to imbalance between Haydn

and Mozart quartets (209 versus 82 scores) a classifier that simply predicts Haydn given any

input achieves 71.8% so, despite the variance, it is unlikely that our classifiers are particularly

effective for this task. Overall, we conclude that the convolutional models proposed in this

paper perform quite well. We find this notable, given that success in neural modeling is often

associated with much larger datasets. Furthermore, we do not believe that the potential of

these methods has been exhausted; further investigation may yield even better end-to-end

neural architectures for composer attribution.

4.4 Conclusion

Having gone to the effort to construct generative models (Section 4.2) and composer attri-

bution models (Section 4.3) we should emphasize that we are not interested in these models

128

as ends unto themselves. Our interest in a generative model of music is motivated by their

power as a prior over musical form. For example, difficult or ambiguous transcription ques-

tions could be more readily resolved given prior over the form of a transcribed performance:

any ambiguities can be resolved to make the transcribed output most likely under the prior.

Concrete applications of generative models is priors for Bayesian posterior sampling are

discussed next in Chapter 5. Likewise, we are not particularly interested in the composer

attribution task in its own right, but the task is appealing as an unambiguous benchmark

classification task for musical scores.

Arguably, the most challenging aspect of working with symbolic musical data is not the

modeling, but rather the diversity of representations and encodings discussed in Section 4.1.

Digital symbolic music is unlike images or audio, which have standard discretized encodings

as pixel or sample arrays, nor is symbolic music like language, which, through the hard work

of the Unicode consortium, has a relatively standardized universal character set. This lack

of standardization makes it difficult to choose an encoding to model, and difficult to make

comparisons between models based on different encodings. We hope that the tensor definition

of symbolic music proposed in Definition 4.1, and the factorization-agnostic cross entropy

metric proposed in Definition 4.4 can help to bring clarity to these modeling questions.

But we also acknowledge that encodings are likely to remain a difficulty for symbolic music

modeling work in the foreseeable future.

129

Chapter 5

CONDITIONAL SAMPLING FROM GENERATIVE MODELS

Generative models can serve as a powerful primitive for creative interaction with data.

Conditional generative models p(x|y) allow us to synthesize or re-synthesize multimedia,

using conditioning variables y as adjustable knobs to steer the model’s outputs in service

to a creative vision. While training a conditional generative model is a straightforward

generalization of unconditional generative modeling, there are several reasons we might want

to avoid training task-specific conditional generative models. First, generative models are

expensive to train: building a large suite of conditional generative models for a variety of

related tasks could be an inefficient use of computational resources. Second, we may want

to take advantage of large quantities of unlabeled data to train an unconditional generative

model, and adapt this model to a conditional task using a much smaller quantity of labeled

data. Third, training a conditional generative model requires labeled data during training:

given a general-purpose generative model trained on unlabeled data, we may want to later

adapt this model for conditional sampling using a labeled dataset. Finally, while injecting

conditional variables into a generative model is mathematically straightforward, this change

requires modifications to the neural architecture used to parameterize the model. The precise

nature of these changes may be non-obvious, specific to a particular conditioning variable,

and the hyper-parameter settings of the modified architecture may be different than the

original unconditional architecture, requiring further hyper-parameter optimization for each

conditional model to achieve strong results.

In this chapter we develop a procedure for conditional sampling from posterior distribu-

tions of the form p(x|y) ∝ p(y|x)p(x), given an unconditional generative model p(x) and a

classifier p(y|x). The idea is to construct a Markov chain, based on Langevin dynamics, with

130

a steady state distribution that approximates the target distribution p(x|y), while avoiding a

direct (and intractable) explicit calculation of the posterior density p(x|y). This approach to

sampling decouples the generative modeling problem from the details of specific conditional

generation tasks, giving us a general way to construct conditional samples x, controlled by

labels y. We treat p(x) as a black box, which allows us to take advantage of pre-trained

generative models trained using vast quantities of un-labeled data and industrial-scale com-

puting resources.

In Section 5.1, we review Langevin dynamics [Neal et al., 2011] and noise-annealed

Langevin dynamics [Song and Ermon, 2019] along with their application to general likelihood-

based models and extension to the posterior sampling setting [Jayaram and Thickstun, 2020,

Song et al., 2021]. Langevin dynamics follow the gradients of a continuous log-likelihood func-

tion, and so a Langevin-based sampler cannot be directly applied to discrete distributions.

We propose an approach to smoothing discrete distributions, which allows Langevin samplers

to be applied to discretized generative models of continuous data. We focus in particular

on smoothing of discretized autoregressive models. Defined over a discrete lattice within a

continuous space, these models occupy a middle ground between continuous and discrete

models. Our interest in discretized autoregressive models is motivated by their success as

unconditional models of audio waves [van den Oord et al., 2016a, Mehri et al., 2017, Dhariwal

et al., 2020].

In Section 5.2 we discuss linear inverse problems of recovering x given y = g(x), for

some linear function g : X n → Yn. We propose to use deep generative models as priors for

linear inverse problems, using Langevin dynamics to sample from the posterior distribution

over possible inverses x. We focus in particular on source separation, which can be framed

as a linear inverse problem. For some inverse problems, the posterior distribution p(x|y)

is quite peaked, and sampling recovers the only plausible inverse y. But in many cases,

the inverse is underdetermined: a ground truth label x for input y represents just one of a

variety of plausible inverses. This motivates our interest in posterior sampling, by which we

can explore the space of plausible inverses under the prior. At the same time, this ambiguity

131

poses a challenge traditional evaluation metrics, which often presume that a ground-truth x

is identifiable given y. We therefore discuss evaluation methodology, and propose the use of

generative modeling metrics to evaluate source separation results.

In Section 5.3 we undertake an investigation of the empirical behavior of conditional

Langevin sampling in the visual and audio domains. We consider unconditional Langevin

sampling, as well as linear inverse problems. We focus in particular on source separation,

which we frame as a linear inverse problem, with additional results for other linear inverse

problems: in-painting, super-resolution, and image colorization. Our empirical study focuses

on three questions. First, how fast and accurate is the Langevin sampling procedure? Second,

how does the quality of the prior model affect the quality of results? And third, how does the

quality of Langevin posterior sampling compare to task-specific solutions to various linear

inverse problems?

5.1 Conditional Sampling via Langevin Dynamics

We can sample from an unconditional, continuous probability distribution p(x) over objects

x ∈ Rn via Langevin dynamics. Let x0 ∼ Uniform(Rn), εt ∼ N (0, In), and define a

Markov chain

x(t+1) ≡ x(t) + η∇x log p(x(t)) +
√

2ηεt. (5.1)

As we discuss in Chapter 2 (Section 2.7), under regularity conditions on p(x) and for a

sufficiently small step size η, the iterates x(t) converge in distribution to p(x) as t → ∞.

When the distribution p(x) is parameterized by a neural network, then gradients ∇x log p(x)

can be computed by automatic differentiation with respect to the inputs of the generator

network. This family of likelihood-based models includes autoregressive models [Salimans

et al., 2017, Parmar et al., 2018], the variational autoencoder [Kingma and Welling, 2014,

van den Oord et al., 2017], and flow-based models [Dinh et al., 2017, Kingma and Dhariwal,

2018]. Alternatively, if gradients of the distribution are modeled [Song and Ermon, 2019],

132

then an estimate of ∇x log p(x) can be used directly.

For conditional generation tasks, we are interested in sampling from the posterior of a

joint distribution p(x,y) = p(y|x)p(x), where p(x) is an autoregressive model over x ∈ Rn

and p(y|x) is a conditional likelihood. The posterior distribution is given by the density

p(x|y) =
p(y|x)p(x)∫

X p(y|x)p(x) dx
. (5.2)

In general the denominator p(y) =
∫
X p(y|x)p(x) dx has no simple closed form, and cal-

culating this density is typically intractable. However p(y) is constant as a function of x,

so ∇x log p(y) = 0, and therefore the Langevin dynamics for sampling from the posterior

distribution are

x(t+1) ≡ x(t) + η∇x log p(x(t)|y) +
√

2ηεt

= x(t) + η∇x

(
log p(x(t)) + log p(y|x(t))

)
+
√

2ηεt. (5.3)

This is a convenient Markov chain for posterior sampling, because it avoids explicit calcula-

tion of the denominator of the posterior density. We are particularly interested in measure-

ment models of the form y = g(x), for some linear function g : Rn → Rm. This family of

linear measurement models describes the conditional generation tasks featured in Section 5.3,

as well as other linear inverse problems including sparse recovery.

For rich, multi-modal distributions p(x,y), Langevin dynamics mixes slowly. In Section

5.1.2 we develop a procedure for smoothing p(x,y) that accelerates this mixing process.

Given a temperature parameter σ, we introduce distributions pσ(x,y) that smooth out the

structure of p(x,y). At high temperatures, pσ(x,y) is unimodal and irreducible, so Langevin

dynamics will mix quickly. And pσ(x,y)→ p(x,y) in total variation as we cool the temper-

ature σ to zero. This motivates introduction of a modified Langevin dynamics, replacing the

133

Algorithm 3: Noise-Annealed Langevin Sampling

Input: y, {σi}Li=1, δ, T
Sample x(0) ∼ N (0, σ2

1In)
for i← 1 to L do
ηi ← δ · σ2

i /σ
2
L

for t = 1 to T do
Sample εt ∼ N (0, In)
g(t) ← ∇x log pσi(x

(t)) +∇x log pσi(y|x(t))
x(t+1) ← x(t) + ηig

(t) +
√

2ηεt
end for

end for

posterior likelihood p(x|y) with its smoothed counterpart pσ(x|y):

x(t+1) ≡ x(t) + η∇x log pσ(x(t)|y) +
√

2ηεt. (5.4)

These dynamics approximate samples from p(x|y) as η → 0, σ2 → 0, and t→∞.

We appeal to simulated annealing [Kirkpatrick et al., 1983] using the heuristic proposed

by Song and Ermon [2019] to turn down the temperature as the Markov chain (5.4) mixes. In

contrast to classical Markov chain sampling, for which samples x(t) converge in distribution

to p, annealed Langevin dynamics converges asymptotically to a single point distributed

approximately according to p. Algorithm 3 describes these annealed Langevin dynamics

given a smoothed prior pσ(x) and smoothed conditional likelihood pσ(y|x). Details of the

annealing schedule σ1, . . . , σL and step size η are discussed in Section 5.1.5.

In Section 5.1.3 we develop a Langevin sampler for neural autoregressive models [Larochelle

and Murray, 2011]. This is a popular family of generative models, with wide-ranging appli-

cations in a variety of domains including audio [van den Oord et al., 2016a, Dhariwal et al.,

2020], images [van den Oord et al., 2016b, Salimans et al., 2017, Parmar et al., 2018, Razavi

et al., 2019], and text [Radford et al., 2019, Brown et al., 2020]. Continuous autoregressive

models [Uria et al., 2013] are likelihood-based models and, as such, they are amenable to the

134

smoothing techniques developed in Section 5.1.2. But many popular autoregressive models

of continuous data are defined over a discretized support set [van den Oord et al., 2016b,

Salimans et al., 2017, Parmar et al., 2018, Razavi et al., 2019, van den Oord et al., 2016a], for

which the smoothing procedure described in Section 5.1.2 cannot be directly applied [Frank

and Ilse, 2020].

Neural autoregressive models parameterize the conditional distribution over a token in

an ordered sequence, given previous tokens in the sequence. The standard approach to sam-

pling from an autoregressive model iteratively generates tokens, according to a conditional

distribution over tokens defined by the model, conditioned on the partial sequence of previ-

ously generated tokens. We will refer to this approach to sampling as the ancestral sampler.

Ancestral sampling has time complexity that scales linearly in the length of the generated

sequence. For data such as high-resolution images or audio, ancestral sampling from an

autoregressive model (where the tokens are pixels or sound pressure readings respectively)

can be impractically slow. In Section 5.1.4, we present a stochastic variant of the Langevin

sampler for autoregressive models based on stochastic gradient Langevin dynamics [Welling

and Teh, 2011]. This is an embarrassingly parallel, asynchronous distributed algorithm for

autoregressive sampling. In Section 5.3 we will see that stochastic Langevin sampling can

approximate the quality of ancestral sampling to arbitrary accuracy, with compute time that

is inverse proportional to the number of computing devices. This allows Langevin sampling

to take full advantage of modern, massively parallel computing infrastructure.

5.1.1 Related Work on Sampling

Noise-annealed Langevin posterior sampling is based on the annealed Langevin dynamics

introduced by Song and Ermon [2019], which accelerates standard Langevin dynamics [Neal

et al., 2011, Du and Mordatch, 2019] using a smoothing procedure in the spirit of simulated

annealing [Kirkpatrick et al., 1983] and graduated optimization [Blake and Zisserman, 1987].

The extension of annealed Langevin dynamics to posterior sampling, which we develop in this

work for linear inverse problems, is discussed for the fully general case of posterior sampling

135

by Song et al. [2021]. Markov-chain Monte Carlo posterior samplers based on Gibbs sampling

rather than Langevin dynamics are proposed by Theis and Bethge [2015] and Hadjeres et al.

[2017] as solutions for inpainting tasks.

The slow speed of ancestral sampling is a persistent obstacle to the adoption and deploy-

ment of autoregressive models, leading to algorithmic innovations that seek to parallelize the

sampling process. Parallel WaveNet [van den Oord et al., 2018] and ClariNet [Ping et al.,

2019] train generative flow models to mimic the behavior of an autoregressive model. Sam-

pling from a flow model requires only one pass through a feed-forward network that can be

distributed across multiple devices; these models can themselves be adapted for conditional

sampling tasks using the Langevin sampler, as we demonstrate with the Glow model [Kingma

and Dhariwal, 2018] in Section 5.3. Wiggers and Hoogeboom [2020] and Song et al. [2020]

propose fixed-point algorithms for sampling from autoregressive models that, like Langevin

sampling, iteratively refine an initial sample from a simple distribution into a sample from

the target distribution. These iterative algorithms are easily adapted to completion problems

given partial observations (e.g., inpainting and super-resolution) but are not easily adaptable

to linear inverse problems or more general conditional sampling tasks.

Similar to anytime sampling [Xu et al., 2021], Langevin sampling offers a tradeoff between

sample quality and computational budget. The Langevin iterates (5.1) mix to the target dis-

tribution as the iteration count t→∞; by stopping early, we can approximate samples from

this distribution using less computation. We explore the empirical tradeoff between sample

quality and computation for Langevin sampling from autoregressive models in Section 5.3.3.

The anytime sampler proposed by Xu et al. [2021] requires a specific model architecture

based on the VQ-VAE [van den Oord et al., 2017, Razavi et al., 2019]. In contrast, we can

use Langevin sampling with any likelihood-based model. But unlike an anytime sampler, the

computational budget for annealed Langevin sampling must be specified in advance: halting

prior to completing the annealing schedule will result in noisy samples.

136

5.1.2 Smoothing a Joint Distribution

To accelerate mixing of the Markov chain given by Equation (5.3), we adopt a simulated

annealing schedule over smoothed approximations to the model p(x), extending the uncon-

ditional sampling algorithm proposed by Song and Ermon [2019]. The reason for smoothing

is that rich distributions p(x|y) are multi-modal, and it is difficult for Langevin dynamics

to hop between well-separated modes and properly explore the sample space. By smoothing

out the distribution, we create an easier distribution to sample; in the extreme this distri-

bution becomes approximately Gaussian and theoretical guarantees ensure efficient mixing.

As we gradually reduce the smoothing temperature, we incrementally commit to sampling a

particular cluster of modes in the underlying distribution; as temperature approaches zero,

annealed sampling converges to a neighborhood of a single mode of p(x|y). Inspiration and

analogies to this procedure can be found in previous work on simulated annealing [Kirk-

patrick et al., 1983], graduated optimization [Blake and Zisserman, 1987], and coarse-to-fine

methods [Raphael, 2001, Felzenszwalb and Huttenlocher, 2006, Kiddon and Domingos, 2011].

We smooth a joint density p(x,y) by convolving x with a spherical Gaussian N (0, σ2In).

Let x̃ = x + εσ where εσ ∼ N (0, σ2In). Note that x̃ is conditionally independent of y given

x and therefore the joint distribution over x, x̃, and y can be factored as

pσ(x,y, x̃) = pσ(x̃|x)p(y|x)p(x). (5.5)

We will work with the smoothed marginal pσ(x̃,y) of the joint distribution pσ(x,y, x̃).

If ϕσ(x) denotes the density of a spherical Gaussian N (0, σ2In) on Rn then the marginal

pσ(x̃,y) of Equation (5.5) can be expressed by

pσ(x̃,y) =

∫
ϕσ(x̃− x)p(x,y) dx. (5.6)

This density approximates the original distribution p(x,y) in the sense that pσ(x̃,y) →
p(x,y) in total variation as σ2 → 0. The smoothed density pσ(x̃,y) can be factored as

137

pσ(y|x̃)pσ(x̃). The density pσ(x̃) is simply the smoothed Gaussian convolution of p(x):

pσ(x̃) =

∫
pσ(x̃,y) dy =

∫∫
ϕσ(x̃− x)p(x,y) dx dy (5.7)

=

∫
ϕσ(x̃− x)p(x)

(∫
p(y|x) dy

)
dx =

∫
ϕσ(x̃− x)p(x) dx. (5.8)

And because y is conditionally independent of x̃ given x, marginalizing over x we see that

pσ(y|x̃) =

∫
pσ(y|x̃,x)pσ(x|x̃) dx =

∫
p(y|x)ϕσ(x− x̃) dx. (5.9)

The integrals in Equations (5.8) and (5.9) are difficult to calculate directly in general.

For noise-conditioned score networks, which directly parameterize the gradients of the prior

log-likelihood given a noise level σ, we can directly compute ∇x̃ log pσ(x̃) by evaluating the

score network at the desired noise level. For the linear inverse problems discussed in Section

5.2, the smoothed likelihood pσ(y|x̃) has a convenient closed form. But for generic likelihood-

based models p(x) and p(y|x), these smoothed distributions are not directly accessible.

We can adapt models p(x) and p(y|x) to approximate the quantities in Equations (5.8)

and (5.9) using a fine-tuning procedure inspired by transfer learning [Yosinski et al., 2014].

A direct approach to estimating the distributions pσ(x̃) and pσ(y|x̃) is to train models from

scratch on noisy data x̃ = x + εσ where εσ ∼ N (0, σ2In). But this not always practical;

generative models are expensive to train. Instead of training models from scratch, we can

finetune pre-trained models p(x) and p(y|x) on noise-perturbed data. Empirically, this

procedure quickly converges rapidly to an estimate of pσ(x).

Fine-tuning requires us to store a copy of the model for each of L noise levels σ. This can

be avoided by training a single noise-conditioned generative model as described in Section 5

of Song et al. [2021]. The advantage of using copies of the model is that we can directly use

standard generative models, without any adjustment to the network architecture or subse-

quent hyper-parameter tuning of a modified architecture. This approach cleanly decouples

the conditional sampling problem from neural architecture design questions. Note that while

138

we store L copies of the model, there is no algorithmic memory overhead: these models are

loaded and unloaded serially during optimization as we anneal the noise levels, so only one

model is resident in memory at a time. While GPU memory is a scarce resource, disk space

is generally abundant.

5.1.3 Discretized Autoregressive Smoothing

We now consider Langevin sampling for autoregressive generative models over indexed se-

quences of values x ∈ X n where

p(x) =
n∏
i=1

p(xi|x<i). (5.10)

In particular, we are interested in developing a sampler for discretized autoregressive models,

where X = R and each conditional p(xi|x<i) has support on a finite set of scalar values

D = {e1, . . . , ed} ⊂ R. The set Dn could represent, for example, an 8-bit encoding of an

image or audio wave. For discrete models, the gradients ∇x log p(x(t)) required for Langevin

dynamics are undefined. In this Section, we propose a smoothing procedure for discretized

autoregressive models, creating a differentiable density on which the Markov chain described

by (5.1) can mix. This procedure is visualized in Figure 5.1.

We will work with models that parameterize the conditional distribution p(xi|x<i) with a

categorical softmax distribution over d = |D| discrete values. Given functions fi : X i → Rd,

we define

p(xi = ek|x<i) =
exp(fi,k(x<i))∑d
`=1 exp(fi,`(x<i))

. (5.11)

The functions fi are typically given by a neural network, with shared weights across the

sequential indices i. Collectively, these conditional models define the joint distribution p(x)

according to Equation (5.10).

Following the smoothing procedure in Section 5.1.2, we smooth p(x) by convolving it with

a spherical Gaussian N (0, σ2In). This smoothing relies on the fact that ek ∈ D represent

139

<latexit sha1_base64="cSoDE6/XPIkG/Yyhgwuth8CdKiM=">AAACAHicbVC7SgNBFJ31GeMramFhMxgEq7ArohYWQRvLCOYBSVhmZ+8mQ2YfzNyVhGUbf8XGQhFbP8POv3HyKDTxwIXDOfdy7z1eIoVG2/62lpZXVtfWCxvFza3tnd3S3n5Dx6niUOexjFXLYxqkiKCOAiW0EgUs9CQ0vcHt2G8+gtIijh5wlEA3ZL1IBIIzNJJbOuygkD5kHYQhekE2zHM3uxa5WyrbFXsCukicGSmTGWpu6avjxzwNIUIumdZtx06wmzGFgkvIi51UQ8L4gPWgbWjEQtDdbPJATk+M4tMgVqYipBP190TGQq1HoWc6Q4Z9Pe+Nxf+8dorBVTcTUZIiRHy6KEglxZiO06C+UMBRjgxhXAlzK+V9phhHk1nRhODMv7xIGmcV56Ji35+XqzezOArkiByTU+KQS1Ild6RG6oSTnDyTV/JmPVkv1rv1MW1dsmYzB+QPrM8fAtyXUQ==</latexit>

x̃<i
<latexit sha1_base64="8ILI+O1f4P2ziLqHuKfqys2WE8k=">AAACI3icbVDLSsNAFJ3UV62vqks3g0XQTUlEVMRF0Y3LClaFpoTJ9KYOnTyYuZGWmH9x46+4caEUNy78F6c14PPAwOGcc7lzj59IodG236zS1PTM7Fx5vrKwuLS8Ul1du9Rxqji0eCxjde0zDVJE0EKBEq4TBSz0JVz5/dOxf3ULSos4usBhAp2Q9SIRCM7QSF71yEUhu5AluZe5WvRClm+7CAP0g2yQe4Le0SLxpZrosch3vGrNrtsT0L/EKUiNFGh61ZHbjXkaQoRcMq3bjp1gJ2MKBZeQV9xUQ8J4n/WgbWjEQtCdbHJjTreM0qVBrMyLkE7U7xMZC7Uehr5Jhgxv9G9vLP7ntVMMDjuZiJIUIeKfi4JUUozpuDDaFQo4yqEhjCth/kr5DVOMo6m1Ykpwfp/8l1zu1p39un2+V2ucFHWUyQbZJNvEIQekQc5Ik7QIJ/fkkTyTF+vBerJG1utntGQVM+vkB6z3Dzpypnc=</latexit>

p̃�(xi|x̃<i)
<latexit sha1_base64="t09LOYFfmINnRFfX/ep87MqM9pk=">AAACNnicbVC7SgNBFJ31bXxFLW0Gg6AWYVdELSyCNjaCgkmEbFhmJ3eTwdkHM3dDwrpfZeN32NlYKGLrJziJ8e2BgcM553LnHj+RQqNt31tj4xOTU9Mzs4W5+YXFpeLySk3HqeJQ5bGM1aXPNEgRQRUFSrhMFLDQl1D3r44Hfr0LSos4usB+As2QtSMRCM7QSF7x1O0ylXSEl7latEOW023qopAtyJL8U9x0EXroB1kv9wS9/kh8qSZ6KPItr1iyy/YQ9C9xRqRERjjzinduK+ZpCBFyybRuOHaCzYwpFFxCXnBTDQnjV6wNDUMjFoJuZsOzc7phlBYNYmVehHSofp/IWKh1P/RNMmTY0b+9gfif10gxOGhmIkpShIi/LwpSSTGmgw5pSyjgKPuGMK6E+SvlHaYYR9N0wZTg/D75L6ntlJ29sn2+W6ocjeqYIWtknWwSh+yTCjkhZ6RKOLkh9+SRPFm31oP1bL28R8es0cwq+QHr9Q2fFq5J</latexit>

'� ⇤ p̃�(xi|x̃<i)

<latexit sha1_base64="lWIaQHBJdsm9E3WyjdC/vx0NmxA=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hd0gxosQ9OIxgnnAZgmzk9lkyDyWmV4hhHyGFw+KePVrvPk3TpI9aGJBQ1HVTXdXnApuwfe/vbX1jc2t7cJOcXdv/+CwdHTcsjozlDWpFtp0YmKZ4Io1gYNgndQwImPB2vHobua3n5ixXKtHGKcskmSgeMIpASeFXcsHkuAbXK31SmW/4s+BV0mQkzLK0eiVvrp9TTPJFFBBrA0DP4VoQgxwKti02M0sSwkdkQELHVVEMhtN5idP8blT+jjRxpUCPFd/T0yItHYsY9cpCQztsjcT//PCDJLraMJVmgFTdLEoyQQGjWf/4z43jIIYO0Ko4e5WTIfEEAoupaILIVh+eZW0qpXgquI/XJbrt3kcBXSKztAFClAN1dE9aqAmokijZ/SK3jzwXrx372PRuublMyfoD7zPH8E/kEA=</latexit>

� = 27

<latexit sha1_base64="VVUpcOtZP8Epnw2oFFd+HDmEQX4=">AAAB83icbVBNSwMxEJ2tX7V+VT16CRbBU8mKqBeh6MVjBWsL3aVk02wbmmSXJCuUpX/DiwdFvPpnvPlvTNs9aOuDgcd7M8zMi1LBjcX42yutrK6tb5Q3K1vbO7t71f2DR5NkmrIWTUSiOxExTHDFWpZbwTqpZkRGgrWj0e3Ubz8xbXiiHuw4ZaEkA8VjTol1UhAYPpAEXSPfx71qDdfxDGiZ+AWpQYFmr/oV9BOaSaYsFcSYro9TG+ZEW04Fm1SCzLCU0BEZsK6jikhmwnx28wSdOKWP4kS7UhbN1N8TOZHGjGXkOiWxQ7PoTcX/vG5m46sw5yrNLFN0vijOBLIJmgaA+lwzasXYEUI1d7ciOiSaUOtiqrgQ/MWXl8njWd2/qOP781rjpoijDEdwDKfgwyU04A6a0AIKKTzDK7x5mffivXsf89aSV8wcwh94nz8ntZBz</latexit>

� = 110

<latexit sha1_base64="N1pqFq09oesODhD29T+xurNZ970=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKqBch6MVjBPPAZAmzk9lkyDyWmVkhLPkLLx4U8erfePNvnCR70MSChqKqm+6uKOHMWN//9gorq2vrG8XN0tb2zu5eef+gaVSqCW0QxZVuR9hQziRtWGY5bSeaYhFx2opGt1O/9US1YUo+2HFCQ4EHksWMYOukx65hA4HRNQp65Ypf9WdAyyTISQVy1Hvlr25fkVRQaQnHxnQCP7FhhrVlhNNJqZsammAywgPacVRiQU2YzS6eoBOn9FGstCtp0Uz9PZFhYcxYRK5TYDs0i95U/M/rpDa+CjMmk9RSSeaL4pQjq9D0fdRnmhLLx45gopm7FZEh1phYF1LJhRAsvrxMmmfV4KLq359Xajd5HEU4gmM4hQAuoQZ3UIcGEJDwDK/w5hnvxXv3PuatBS+fOYQ/8D5/AERNj/4=</latexit>

� = 1
m
as
s

m
as
s

m
as
s

de
ns
ity

de
ns
ity

de
ns
ity

Time x x

x

x

x

Figure 5.1: A visual summary of discretized autoregressive smoothing. Given a noisy history
x̃<i = x<i+ε<i (left column) where ε ∼ N (0, σ2I), we train a model to predict the un-noised
distribution over xi ∈ R (middle column). This distribution is discrete and non-differentiable
in x̃; we convolve with a Gaussian ϕσ(t) = N (t; 0, σ2) to produce a continuous estimate of x̃i
(right column). We can run Langevin dynamics on the continuous distribution, and gradually
anneal the smoothing to approximate the target distribution.

scalar values on the real line, and therefore the discrete distribution p(xi|x<i) can be viewed

as a linear combination of weighted Dirac spikes on D ⊂ R. In Section 5.1.2 we approximated

the smoothed density pσ(x̃) by fine-tuning a model p(x) on noisy data x̃ = x+εσ where x ∼ p

and εσ ∼ N (0, σ2In). This approach cannot be directly applied to discrete autoregressive

models as defined by Equation (5.11). The obstruction is that noisy samples x̃i ∈ R are not

supported by the discretization D. One way to address the problem is to replace the discrete

model p(x) with a continuous autoregressive model of pσ(x̃), e.g., RNADE [Uria et al., 2013].

We avoid this approach because fine-tuning p(x) to pσ(x̃) becomes complicated when these

models have different architectures.

Instead of directly fine-tuning p(x) to a model pσ(x̃), we combine an analytic calculation

with an auxiliary model learned via fine-tuning. Let p̃σ(xi|x̃<i) denote a (discrete) conditional

model trained to predict xi given noisy covariates x̃<i = x<i+εσ,<i. If ϕσ denotes the density

140

of N (0, σ2) then we can re-write the factored density pσ(x̃) as

pσ(x̃) =
n∏
i=1

pσ(x̃i|x̃<i) =
n∏
i=1

(
ϕσ ∗ p̃σ(· |x̃<i)

)
(x̃i). (5.12)

On the right-hand side, we decompose the smoothed conditional densities pσ(x̃i|x̃<i) into

Gaussian convolutions of discrete conditionals p̃σ(· |x̃<i) evaluated at x̃i. This suggests the

following approach to evaluating pσ(x̃i|x̃<i):

• Learn a (discrete) model p̃σ(xi|x̃<i), trained to predict the un-noised value xi given

noisy history x̃<i. This model can be learned efficiently by finetuning a pre-trained

model p(xi|x<i) on noisy covariates x̃<i. See Figure 5.1 (middle column).

• Evaluate the Gaussian convolution ϕσ ∗ p̃σ(· |x̃<i) at x̃i to compute pσ(x̃i|x̃<i). This

convolution can be calculated in closed form given p̃σ(xi|x̃<i). See Figure 5.1 (right

column).

The convolution pσ(x̃i|x̃<i) =
(
ϕσ ∗ p̃σ(· |x̃<i)

)
(x̃i) has a simple closed form given by a

Gaussian mixture model

pσ(x̃i|x̃<i) =
d∑

k=1

p̃σ(ek|x̃<i)ϕσ(x̃i − ek). (5.13)

Using the softmax parameterization of p̃(xi|x<i) given by Equation (5.11), with fine-tuned

logits fσ,i : X⊗i → Rd, the log-density of this smoothed conditional density can be written

in a numerically stable form:

log pσ(xi|x<i) = − log
d∑
`=1

exp(fσ,i,`(x<i)) + log
d∑

k=1

exp

(
fσ,i,k(x<i)−

1

2σ2
(xi − ek)2

)
+ C.

(5.14)

141

5.1.4 Stochastic Gradient Langevin Sampling

The Langevin updates described in Equations (5.1) or (5.3) require calculation of log p(x).

This calculation is an O(n) operation for an autoregressive model of length-n sequences.

Unlike ancestral sampling, calculating log p(x) for a given sequence x ∈ Rn decomposes

into an embarrassingly parallel set of calculations log pσ(xi|x<i). For moderate sequence

lengths n, the cost of computing log p(x) is essentially constant using a modern parallel

computing device (this is what allows autoregressive models to be efficiently trained using

the maximum likelihood objective). But when n is large, e.g., for WaveNet models where

just a minute of audio has n > 106 samples, a single device cannot fully parallelize all n

conditional likelihood calculations. In this case, it can be convenient to distribute sampling

across multiple computing devices. We will now describe a variant of Langevin sampling for

autoregressive models (Algorithm 4) that is easily distributed across a cluster of devices.

Instead of making batch updates on a full sequence x ∈ Rn, consider updating a single

coordinate j ∈ {1, . . . , n}:

x
(t+1)
j = x

(t)
j + η∇xj log pσ(x(t)) +

√
2ηε

(t)
j . (5.15)

This coordinate-wise derivative is only dependent on the tail of the sequence x≥j:

∇xj log pσ(x) =
n∑
i=j

∇xj log pσ(xi|x<i). (5.16)

This does not yet yield a computational advantage: calculating an update on a single coor-

dinate xj required n− j inference calculations pσ(xi|x<i). But models over long sequences,

including WaveNets, usually make a Markov assumption p(xi|x<i) = p(xi|xi−w, . . . ,xi−1) for

some limited contextual window of length w. In this case, the coordinate-wise derivative

requires only w calls:

∇xj log pσ(x) =

j+w∑
i=j

∇xj log pσ(xi|x<i). (5.17)

142

Calculating a gradient on a contiguous block of c coordinates leads to a more efficient

update

∇xj:j+c log pσ(x) =

j+c+w∑
i=j

∇xj:j+c log pσ(xi|x<i). (5.18)

Calculating Equation (5.18) requires transmission of a block {xj−w, . . . ,xj+c+w} of length

c + 2w to the computing device, and c + w calculations pσ(xi|x<i) in order to compute the

gradient of a block of length c. If we partition a sequence of length n into n/c blocks of length

c, then we can distribute computation of ∇x log pσ(x) with an overhead factor of 1 + w/c.

This motivates choosing c as large as possible, under the constraint that c + w calculations

pσ(xi|x<i) can still be parallelized on a single device.

We can calculate ∇x log pσ(x) by aggregating n/c blocks of gradients according to Equa-

tion (5.18), with synchronous communication between n/c machines for every update Equa-

tion (5.1); this is a MapReduce algorithm [Dean and Ghemawat, 2008]. We propose a

different approach in Algorithm 4 based on block-stochastic Langevin dynamics [Welling

and Teh, 2011]. If j ∈ {1, . . . , n} is chosen uniformly at random then Equation (5.18) is

an unbiased estimate of ∇x log pσ(x). This motivates block-stochastic updates on patches,

which multiple devices can perform asynchronously, a Langevin analog to Hogwild! [Niu

et al., 2011].

For general likelihoods p(y|x) (e.g., a classifier) the conditioning values y may depend on

the whole sequence x. In this case, stochastic PnF must read the entire sequence x in order

to calculate the posterior

∇xj:j+c log p(x|y) = ∇xj:j+c

(
log p(x) + log p(y|x)

)
. (5.19)

But for long sequences x such as audio, the conditioning information y is often a local

function of the sequence x. In this case, x ∈ X n, y ∈ Yn, yi = g(xN(i)) where N(i) is a local

neighborhood of indices near i, and the likelihood decomposes via conditional independence

143

Algorithm 4: Stochastic Autoregressive Langevin Sampling

Input: y, {σi}Li=1, δ, T
Sample x ∼ N (0, σ2

1In)
for i← 1 to L do
ηi ← δ · σ2

i /σ
2
L

Fork()
for t = 1 to T do

Sample j ∼ Uniform{1, . . . , n}
Sample εt ∼ N (0, Ic)

Read x
(t)
j−w:j+c+w ← xj−w:j+c+w

g
(t)
j ← ∇xj:j+c log pσi(x

(t)
j−w:j+c+w)

+∇xj:j+c log pσi(y
(t)
j:j+c|x(t)

j−w:j+c+w)

Write xj:j+c ← x
(t)
j:j+c + ηig

(t)
j +

√
2ηεt

end for
Synchronize()

end for

into

log p(y|x) =
n∑
i=1

log p(yi|xN(i)). (5.20)

All experiments presented in Section 5.3 feature this conditioning pattern. For spectrogram

conditioning, N(i) is the set of indices (centered at i) required to compute a short-time

Fourier transform. For source separation, super-resolution, and in-painting, N(i) = i. This

allows us to compute block gradients of the conditional likelihood (Algorithm 4).

5.1.5 Setting the Step Size

We broadly adopt the geometric annealing schedule for Langevin dynamics introduced by

Song and Ermon [2019] and elaborated upon by Song and Ermon [2020]. The relationship

between the step size η and the smoothing parameter σ is governed by the signal-to-noise

ratio (SNR) heuristic proposed by Song and Ermon [2019]. Namely, we maintain a constant

signal-to-noise ratio (SNR) between the expected size of the posterior log-likelihood gradient

144

term η∇x̃ log pσ(x̃|y) and the expected size of the Langevin noise
√

2ηε:

E
x̃∼pσ

[∥∥∥∥η∇x̃ log pσ(x̃|y)√
2η

∥∥∥∥2
]

=
η

4
E

x∼pσ

[
‖∇x log pγ(y|x) +∇x log pσ(x)‖2] . (5.21)

Assuming that gradients w.r.t. to the likelihood and the prior are uncorrelated, the SNR is

approximately

η

4
E

x∼pσ

[
‖∇x log pγ(y|x)‖2]+

η

4
E

x∼pσ

[
‖∇x log pσ(x)‖2] . (5.22)

Empirical work has found that the gradients of a smoothed model pσ(x̃|y) are inverse-

proportional to the variance of the noise: E‖∇x log pσ(x(t))‖2 ∝ 1/σ2 [Song and Ermon, 2019].

This relationship has been consistently observed across a variety of datasets, data domains

and families of generative models [Jayaram and Thickstun, 2020, Song and Ermon, 2020,

Jayaram and Thickstun, 2021]. The SNR heuristic, together with this inverse-proportionality

relationship, motivates choosing a step size η = δ · σ2 for some problem-dependent constant

of proportionality δ.

The empirical inverse proportionality of posterior likelihood gradients and σ2 could be

surprising to the reader, and clearly cannot hold for general probability densities. For ex-

ample, gradients of the smoothed prior densities pσ(x̃) (Equation (5.8)) can be described by

convolution of p with a Gaussian kernel:

∇x̃ log pσ(x̃) = ∇x̃ log E
ε∼N (0,I)

[p(x̃− σε)] . (5.23)

From this expression, assuming p is continuous, we clearly see that the gradients are asymp-

totically independent of σ:

lim
σ→0
∇x log pσ(x) = ∇x log p(x). (5.24)

Maintaining proportionality E‖∇x log pσ(x)‖2 ∝ 1/σ2 would require the gradients to grow

145

1.00.5990.3590.2150.1290.0770.0460.0270.0160.01

Standard deviation of the noise

40

45

50

N
oi

se
x

G
ra

di
en

t

Figure 5.2: The behavior of σ × ‖∇x log pσ(x)‖ in expectation for the NCSN (orange) and
Glow (blue) models trained on CIFAR-10 at each of 10 noise levels as σ decays geometrically
from 1.0 to 0.01. For large σ, ‖∇x log pσ(x)‖ ≈ 50/σ. This proportional relationship breaks
down for smaller σ. Because the expected gradient of the noiseless density log p(x) is finite,
its product with σ must asymptotically approach zero as σ → 0.

unbounded as σ → 0, but the gradients of the noiseless distribution log p(x) are finite.

Therefore, proportionality must eventually break down as σ → 0. Similar reasoning apples

to the likelihood pσ(y|x̃).

We conjecture that the proportionality between the gradients and the noise is a conse-

quence of severe non-smoothness in the model p(x). For example, in the visual domain the

probability mass of this distribution is peaked around plausible images x, and decays rapidly

away from these points in most directions. Consider the extreme case where the prior has a

Dirac delta point mass. The convolution of a Dirac delta with a Gaussian is itself Gaussian

so, near the point mass, the noisy distribution pσ will be proportional to a Gaussian density

with variance σ2. If pσ were exactly Gaussian then analytically

E
x∼pσ

[
‖∇x log pσ(x)‖2

]
=

1

σ4 E
x∼pσ

[
x2
]

=
1

σ2
. (5.25)

Because the distribution p(x) does not contain actual point masses—only approximations

thereof—we would expect this proportionality to eventually break down as σ → 0. Indeed,

Figure 5.2 shows that both for NCSN and Glow models of CIFAR-10, after maintaining a

consistent proportionality E [‖∇x log pσ(x)‖2] ∝ 1/σ2 at the higher noise levels, the decay of

σ2 to zero eventually outpaces the growth of the gradients.

We conclude with some comments about two special cases. First, for the discretized

146

autoregressive models discussed in Section 5.1.3, the noiseless distribution p(x) is genuinely

a mixture of Dirac spikes. In this case, the analysis above applies without caveats and the

proportionality relationship between gradients and the smoothing parameter does not break

down as σ → 0 (the precise constant of proportionality remains application dependent, and

is discussed in the experimental details in Section 5.3). Second, when y = g(x) is given by

a linear measurement model, log pσ(y|x̃) is a simple concave quadratic. In this case, we can

show analytically that E
[
‖∇x̃ log pγ(y|x̃)‖2] ∝ 1/σ2.

5.2 Linear Inverse Problems and Source Separation

Linear inverse problems ask us to recover an unobserved object x given measurements y =

g(x) for a known linear function g : Rn → Rm. Many practical visual and audio task can be

cast in this framework: source separation, image colorization, inpainting and outpainting,

super-resolution, and sparse recovery. We will generally be interested in the undetermined

setting, where m < n. In this setting many solutions of x = g−1(y) exist, and we must

impose some regularization on the problem to resolve the ambiguity, such as sparsity [Elad,

2010, Mairal et al., 2014]. In our setting, this regularization takes the form of a Bayesian

prior p(x) learned from data.

Bayesian inverse problems are explored extensively in theoretical settings, where the

prior is given by a simple analytical distribution [Tropp and Wright, 2010, Knapik et al.,

2011, Wang et al., 2017]. Linear inverse problems have also been studied using learned

priors given by GAN’s [Chang et al., 2017, Bora et al., 2017, Raj et al., 2019]. GAN-based

approaches are tailored to the latent variable architecture of the model, performing latent

space optimizations that find codes corresponding to desired outputs. There is no obvious

analog of these latent variable approaches for general likelihood-based models, for example

autoregressive models. Langevin sampling offers a general approach to using likelihood-based

models as priors for Bayesian inverse problems.

We will focus our attention on the single-source separation task [Davies and James,

2007], a representative example of a linear inverse problem with broad practical importance.

147

Single-channel source separation requires us to decompose a mixed signal y ∈ Rm into a

linear combination of k components x1, . . . ,xk ∈ Rm with scalar mixing coefficients αi ∈ R:

y = g(x) ≡
k∑
i=1

αixi. (5.26)

This is motivated by, for example, the “cocktail party problem” of isolating the utterances of

individual speakers x ∈ Rk×m from an audio mixture y ∈ Rm captured at a busy party, where

multiple speakers are talking simultaneously. We review related work on source separation

in Section 5.2.1.

We will solve a Bayesian inverse problem by sampling from the posterior distribution

p(x|y) ∝ p(y|x)p(x). We can view a linear measurement model y = g(x) as degenerate

likelihoods p(y|x) of the form

p(y|x) = δ(y− g(x)), (5.27)

where δ denotes the Dirac delta function. In this case, the smoothed densities pσ(y|x̃)

discussed in Section 5.1.2 can be calculated in closed form. Writing the linear function g as

a matrix g(x) = Ax, it can be shown that

y = g(x) = g(x̃) + g(−εσ) ∼ N
(
g(x̃), σ2AAT

)
. (5.28)

The smoothing pσ(y|x̃) = N
(
g(x̃), σ2AAT

)
generalizes the smoothing proposed by Jayaram

and Thickstun [2020] for source separation. In that work, we proposed separately smoothing

the prior and likelihood, resulting in a smoothed likelihood p(ỹ|x) over ỹ = y + εy, where

εy ∼ N (0, σ2In). This is equivalent to Equation (5.28) in the case of source separation, for

which g(x) = 1
2
x1 + 1

2
x2 and therefore pσ(y|x̃) = N (g(x̃), σ2I).

For some mixtures the posterior distribution p(x|y) is quite peaked, and sampling from

this distribution recovers the only plausible inverse of the observation y. Even with a strong

generative prior, inverse problems including source separation can be ambiguous. Visual

examples of this ambiguity are illustrated in Figures 5.3 and 5.4. This motivates our interest

148

in sampling, which explores the space of plausible separations. It also poses a challenge for

traditional source separation metrics, which presume that the original mixture components

are identifiable and compare the separated components to ground truth. For ambiguous

mixtures of rich data, recovery of ground truth x is not a well-posed problem. Instead, we

should ask whether proposed inverses are consistent with an observed mixture under a given

prior data distribution. Motivated by this perspective, we discuss evaluation metrics for

source separation in Section 5.2.2.

For practical source separation tasks, where we are interested in generating a single

separation result, it is natural consider providing a maximum a-posteriori (MAP) estimate

rather than a sample from the posterior distribution. As we will see in Section 5.2.3, a greedy

effort to generate a MAP estimate by ascending gradients of the posterior log-likelihood

produces undesirable results. We will see in Section 5.3.5 that a more cautious approach,

using an empirical estimate of the MAP over multiple samples, can improve results for

practical tasks such as source separation. But there are reasons to prefer sampling over

an aggressive attempt to obtain a MAP estimate; maximum-likelihood training methods

optimize a model’s likelihood over typical data, but have been observed to behave strangely

at modes of the model distribution [Holtzman et al., 2020].

5.2.1 Related Work on Source Separation

Blind separation. Classical “blind” approaches to single-channel source separation resolve

ambiguity by privileging solutions to (5.26) that satisfiy mathematical constraints on the

components x, such as statistical independence [Comon, 1994, Bell and Sejnowski, 1995,

Davies and James, 2007] sparsity [Lee et al., 1999, Zibulevsky and Pearlmutter, 2001, Li et al.,

2006, Wilson et al., 2008] or non-negativity [Lee and Seung, 1999, Schmidt and Olsson, 2006,

Erdogan and Grais, 2010]. These constraints can be be viewed as weak priors on the structure

of sources, but the approaches are blind in the sense that they do not require adaptation

to a particular dataset. Because blind methods have no access to sample components, they

face the challenging task of modeling the distribution over unobserved components while

149

simultaneously decomposing mixtures into likely components. It is difficult to fit a rich model

to latent components, so blind methods often rely on simple models such as dictionaries to

capture the structure of these components.

One promising recent work in the blind setting is Double-DIP Gandelsman et al. [2019].

This work leverages the unsupervised Deep Image Prior Ulyanov et al. [2018] as a prior over

signal components, similar to our use of a trained generative model. But the authors of this

work document fundamental obstructions to applying their method to single-channel source

separation; they propose using multiple image frames from a video, or multiple mixtures of

the same components with different mixing coefficients α. This multiple-mixture approach

is common to much of the work on blind separation. In contrast, our approach is able to

separate components from a single mixture.

Supervised regression. In contrast to the blind approach, most recent work on source

separation is data-driven. To separate a mixture of sources, it is natural to suppose that

we have access to samples x of individual sources, which can be used as a reference for

what the source components of a mixture are supposed to look like. This data can be

used to regularize solutions of Equation (5.26) towards structurally plausible solutions. The

prevailing way to do this is to construct a supervised regression model that maps an input

mixture y to components xi [Huang et al., 2014, Halperin et al., 2019]. Paired training

data (y,x) can be constructed by summing randomly chosen samples from the component

distributions xi and labeling these mixtures with the ground truth components.

Regression models have been extensively studied for separation of images [Halperin et al.,

2019], audio spectrograms [Huang et al., 2014, 2015, Nugraha et al., 2016, Jansson et al.,

2017], and raw audio [Llúıs et al., 2019, Stoller et al., 2018b, Défossez et al., 2019], as well

as more exotic data domains, e.g., medical imaging [Nishida et al., 1999]. By learning to

predict components (or equivalently, masks on a mixture) this approach implicitly builds a

generative model of the signal components. This connection is made more explicit in recent

work that uses GAN’s to force components emitted by a regression model to match the

distribution of a given dataset [Zhang et al., 2018a, Stoller et al., 2018a].

150

The supervised approach takes advantage of expressive deep models to capture a strong

prior over signal components. But it requires specialized model architectures trained specifi-

cally for the source separation task. In contrast, our approach leverages standard, pre-trained

generative models for source separation. Furthermore, our approach can directly exploit on-

going advances in likelihood-based generative modeling to improve separation results.

Signal Dictionaries. Much work on source separation is based on the concept of a

signal dictionary, most notably the line of work based on non-negative matrix factorization

(NMF) [Lee and Seung, 2000]. These approaches model signals as combinations of elements

in a latent dictionary. Decomposing a mixture into dictionary elements can be used for

source separation by (1) clustering the elements of the dictionary and (2) reconstituting a

source using elements of the decomposition associated with a particular cluster. Dictionaries

are typically learned from data of each source type and combined into a joint dictionary,

clustered by source type [Schmidt and Olsson, 2006, Virtanen, 2007]. The blind setting has

also been explored, where the clustering is obtained without labels by e.g., k-means [Spiertz

and Gnann, 2009]. Recent work explores more expressive decomposition models, replacing

the linear decompositions used in NMF with expressive neural autoencoders [Smaragdis and

Venkataramani, 2017, Venkataramani et al., 2017].

When the dictionary is learned with supervision from labeled sources, dictionary clusters

can be interpreted as implicit priors on the distributions over components. Our approach

makes these prior explicit, and works with generic priors that are not tied to the dictionary

model. Furthermore, our method can separate mixed sources of the same type, whereas

mixtures of sources with similar structure present a conceptual difficulty for dictionary-based

methods.

Generative adversarial separation. Recent work by Sübakan and Smaragdis [2018]

and Kong et al. [2019] explores the intriguing possibility of optimizing x given a mixture m

to satisfy (5.26), where components xi are constrained to the manifold learned by a GAN.

The GAN is pre-trained to model a distribution over components. Like our method, this

approach leverages modern deep generative models in a way that decouples generation from

151

source separation. We view this work as a natural analog to our likelihood-based approach

in the GAN setting.

Likelihood-based approaches. Our approach is similar in spirit to older ideas based

on maximum a posteriori estimation [Geman and Geman, 1984], likelihood maximization

[Pearlmutter and Parra, 1996, Roweis, 2000], and Bayesian source separation [Benaroya

et al., 2006]. We build upon their insights, with the advantage of increased computational

resources and modern expressive generative models.

5.2.2 Evaluation Methodology

Much of the previous work on source separation evaluates results using peak signal-to noise

ratio (PSNR) or structural similarity index (SSIM) Wang et al. [2004]. These metrics assume

that the original sources are identifiable; in probabilistic terms, the true posterior distribution

p(x|m) is presumed to have a unique global maximum achieved by the ground truth sources

(up to permutation of the sources). Under the identifiability assumption, it is reasonable

to measure the quality of a separation algorithm by comparing separated sources to ground

truth mixture components. PSNR, for example, evaluates separations by computing the

mean-squared distance between pixel values of the ground truth and separated sources on a

logarithmic scale.

For CIFAR-10 source separation, the ground truth source components of a mixture are

not identifiable. As evidence for this claim, we call the reader’s attention to Figure 5.3.

For each mixture depicted in Figure 5.3, we present separation results that sum to the

mixture and (to our eyes) look plausibly like CIFAR-10 images. However, in each case the

separated images exhibit high deviation from the ground truth. This phenomenon is not

unusual; Figure 5.4 shows an un-curated collection of samples from p(x|m) using BASIS,

illustrating a variety of plausible separation results for each given mixture. We will later

see evidence again of non-identifiability in Figure 5.13. If we accept that the separations

presented in Figures 5.3, 5.4, and 5.13 are reasonable, then source separation on this dataset

is fundamentally underdetermined; we cannot measure success using metrics like PSNR that

152

OrigMix Sep
Color Ambiguities Structure Ambiguities

OrigMix Sep

Figure 5.3: A curated collection of examples demonstrating color and structural ambiguities
in CIFAR-10 mixtures. In each case, the original components differ substantially from the
components separated by BASIS using NCSN as a prior. But in each case, the separation
results also look like plausible CIFAR-10 images.

compare separation results to ground truth.

Instead of comparing separations to ground truth, we propose instead to quantify the

extent to which the results of a source separation algorithm look like samples from the

data distribution. If a pair of images sum to the given mixture and look like samples from

the data distribution, we deem the separation to be a success. This shift in perspective

from identifiability of the latent components to the quality of the separated components

is analogous to the classical distinction in the statistical literature between estimation and

prediction [Shmueli et al., 2010, Bellec et al., 2018]. To this end, we borrow the Inception

Score (IS) [Salimans et al., 2016] and Frechet Inception Distance (FID) [Heusel et al., 2017]

metrics from the generative modeling literature to evaluate CIFAR-10 separation results.

These metrics attempt to quantify the similarity between two distributions given samples.

We use them to compare the distribution of components produced by a separation algorithm

to the distribution of ground truth images.

In contrast to CIFAR-10, the posterior distribution p(x|m) for an MNIST model is

153

Orig Mix Resampled Separations

Figure 5.4: Repeated sampling using BASIS with NCSN as a prior for several mixtures of
CIFAR-10 images. While most separations look reasonable, variation in color and lighting
makes comparative metrics like PSNR unreliable. This challenges the notion that the ground
truth components are identifiable.

demonstrably peaked. Moreover, BASIS is able to consistently identify these peaks. This

constitutes a constructive proof that components of MNIST mixtures are identifiable, and

therefore comparisons to the ground-truth components make sense. We report PSNR results

for MNIST, which allows us to compare the results of BASIS to other recent work on MNIST

image separation Halperin et al. [2019], Kong et al. [2019].

Although we do not directly model the posterior likelihood p(x|m), we can compute

the log-likelihood of the output samples x. The log-likelihood is a function of the artificial

variance hyper-parameter γ, so it is more informative to look at the unweighted square error

‖m−g(x)‖2; this quantity can be interpreted as a reconstruction error, and measures how well

we approximate the hard mixture constraint. Because we geometrically anneal the variance

σ of the posterior distribution, by the end of optimization the inverse constraint is rigorously

enforced; per-pixel and per-sample reconstruction error is smaller than the quantization level

154

Original Images

Mixture

Simple Gradient
Ascent

Gradient Ascent +
Noise Conditioning

Langevin Dynamics +
Noise Conditioning

Figure 5.5: Non-stochastic gradient ascent produces sub-par results. Annealing over
smoothed-out distributions (Noise Conditioning) guides the optimization towards likely re-
gions of pixel space, but gets stuck at sub-optimal solutions. Adding Gaussian noise to the
gradients (Langevin dynamics) shakes the optimization trajectory out of bad local optima.

of 8-bit color, resulting in pixel-perfect visual reconstructions.

5.2.3 The Importance of Stochasticity

Injecting Gaussian noise into the gradients for Langevin sampling is essential. Setting aside

the formal setting of Bayesian posterior sampling, it is tempting to simply run gradient ascent

on the pixels of the components to maximize the likelihood of these components under the

prior, with a Lagrangian term to enforce the constraint g(x) = y:

x← x + η∇x

[
log p(x)− λ‖g(x)− y‖2

]
. (5.29)

But this does not work. As demonstrated in Figure 5.5, there are many local optima in the

loss surface of p(x) and a greedy ascent procedure simply gets stuck. Pragmatically, the

noise term in Langevin dynamics can be seen as a way to knock the greedy optimization

(5.29) out of local maxima.

In the recent literature, pixel-space optimizations by following gradients ∇x of some

objective are perhaps associated more with adversarial examples than with desirable results

[Goodfellow et al., 2015, Nguyen et al., 2015]. We note that there have been some successes

155

of pixel-wise optimization in texture synthesis [Gatys et al., 2015] and style transfer [Gatys

et al., 2016]. But broadly speaking, pixel-space optimization procedures often seem to go

wrong. We speculate that noisy optimizations (5.4) on smoothed-out objectives like pσ could

be a widely applicable method for making pixel-space optimizations more robust.

5.3 Empirical Sampling Results

We we now investigate the empirical behavior of Langevin posterior sampling for a variety of

datasets and models in the visual and audio domains. In Section 5.3.1, we discuss the datasets

used for the experiments. In Section 5.3.2 we review the models used in the experiments,

and the hyper-parameters of Langevin sampling when each of these models is used as a

prior. In Section 5.3.3 we explore the extent to which the Langevin sampler can accurately

approximate samples from the prior p(x) and posterior p(x|y). In Section 5.3.4 we show

that the stochastic Langevin sampler introduced in Section 5.3.4 is faster than the ancestral

sampler for autoregressive models, when parallelized across a modest number of devices.

Finally, we show how Langevin sampling can be applied to a variety of visual and audio

posterior sampling tasks: source separation (Section 5.3.5), super-resolution (Section 5.3.7),

and inpainting (Section 5.3.8). Qualitative results for visual posterior sampling are shown

in Figure 5.6. Code and instructions for reproducing these experiments is available online

for visual source separation using NCSN and Glow models 1 and autoregressive Langevin

sampling using PixelCNN++ and WaveNet models.2

5.3.1 Datasets

For visual experiments we work with three datasets of images: the MNIST 28× 28 grayscale

dataset [LeCun et al., 1998], CIFAR-10 32× 32 RGB color dataset [Krizhevsky, 2009], and

LSUN dataset [Yu et al., 2015], downsampled to 64 × 64 RGB color. In each case, pixel

channels are represented using scalar values normalized to [0, 1] with 8-bit linear quantization.

1https://github.com/jthickstun/basis-separation

2https://grail.cs.washington.edu/projects/pnf-sampling/

https://github.com/jthickstun/basis-separation
https://grail.cs.washington.edu/projects/pnf-sampling/

156

Source Separation
Ground Truth

Mixture Input

Output

+ = +=

2x Super-Resolution
Ground Truth Down-sampled Input Output

Inpainting
Ground Truth Masked Input Output

Figure 5.6: Langevin sampling applied to visual source separation (Section 5.3.5) super-
resolution (Section 5.3.7) and inpainting (Section 5.3.8) using a PixelCNN++ prior trained
on CIFAR-10 images. Ground-truth images are taken from the CIFAR-10 test set.

Generative priors p(x) are trained on the dataset’s standard training split, and evaluated on

images in the test set.

For audio experiments we use the VCTK dataset [Veaux et al., 2016] consisting of 44

hours of speech and the Supra Piano dataset [Shi et al., 2019] consisting of 52 hours of

piano recordings. We use a random 80-20 train-test split of VCTK speakers and piano

recordings for evaluation. Audio sequences are sampled at a 22kHz with sound pressure

levels normalized to [0, 255]. These pressure levels are quantized using 8-bit µ-law encoding

[CCITT, 1988], except for the source separation task, in which case 8-bit linear encoding is

used. Sequences used for quantitative evaluation are 50k sample excerpts, approximately 2.3

seconds of audio, chosen randomly from the longer test set recordings.

5.3.2 Generative Priors

We investigate four likelihood-based generative models as priors for posterior sampling

tasks: the score-based NCSN model [Song and Ermon, 2019], the flow-based Glow model

[Kingma and Dhariwal, 2018], and autoregressive models PixelCNN++ [Salimans et al.,

2017] and WaveNet [van den Oord et al., 2016a]. Details of the experimental setup and

157

hyper-parameters used for Langevin sampling in conjunction with each model are discussed

below.

(NCSN) We use the official implementation of NCSN, using the pre-trained weights

published by the authors.3 These noise-conditioned models are designed to be used with

the noise-annealed Langevin sampler. We use the standard geometric annealing schedule

proposed by Song and Ermon [2019], beginning from σ1 = 1.0 and annealing to σL = 0.01

over L = 10 discrete noise levels. We set δ = 2 × 10−5, and T = 100. All these hyper-

parameters are the same for both the MNIST and CIFAR-10 sampling experiments.

(Glow) We use the official implementation of Glow, using the pre-trained weights pub-

lished by the authors.4 We adopt the hyper-parameters proposed for NCSN, for each of the

MNIST, CIFAR-10, and LSUN sampling experiments. Using the pre-trained models of p(x)

published by the Glow authors, we fine-tune these models on noise-perturbed data x̃ = x+ε,

where ε ∼ N (0, σ2I). Empirically, this procedure quickly converges to an estimate of pσ(x̃)

within 10 epochs.

(PixelCNN++) We use a public implementation of PixelCNN++ written by Lucas

Caccia.5 We used the pre-trained CIFAR-10 weights for this model shared by Lucas Caccia

(at the link above) with a reported log loss of 2.95 bits per dimension on the CIFAR-10 test

set. For the models pσ(x), we fine-tuned the pre-trained model for 10 epochs at each noise

level σ2. We adopt a geometric annealing schedule for σ2, beginning at σ1 = 1.0 and ending

at σL = 0.01 using L = 19 noise levels. This is twice the number of noise levels used for

NCSN and Glow. We also found that sample quality improved using a smaller learning rate

and mixing for more iterations for the NCSN and Glow models. For conditional sampling

tasks, we set δ = 3e − 06 and T = 300 in contrast to δ = 2e − 05 and T = 100 used

in previous work. In wall-clock time, we find that conditional PixelCNN++ sampling tasks

require approximately 60 minutes to generate a batch of 16 samples using a 1080Ti GPU. We

3https://github.com/ermongroup/ncsn.

4https://github.com/openai/glow.

5https://github.com/pclucas14/pixel-cnn-pp.

https://github.com/ermongroup/ncsn
https://github.com/openai/glow
https://github.com/pclucas14/pixel-cnn-pp

158

speculate that the need for more levels of annealing and slower mixing may be attributable

to the autoregressive model parameterization; similar adjustments to L and δ are required

for the WaveNet models.

(WaveNet) Our audio sampling experiments are performed using a WaveNet model p(x)

trained on both the VCTK and Supra Piano datasets. We used the public implementation of

Wavenet written by Ryuichi Yamamoto.6 While we focus on WaveNet, due to its prominence

as a generative model for audio, Langevin sampling could be applied more generally with

other likelihood-based models. In the audio space, this includes recent diffusion models [Kong

et al., 2021, Chen et al., 2021]. Note however that audio vocoder models [Prenger et al.,

2019, Kim et al., 2019, Ping et al., 2020], which rely on spectrogram conditioning, cannot

be adapted as priors for the source separation, super-resolution, and inpainting experiments.

In addition, GAN based models [Donahue et al., 2019a, Kumar et al., 2019], which are not

likelihood based, cannot be sampled using Langevin dynamics.

For all audio experiments, where data is encoded with values {0, . . . , 255}, we use L = 15

noise levels geometrically spaced between σ = 175.9 and σ = 0.15. The same noise levels are

also used for the sampling speed and quality results presented in Figures 5.7 and 5.8. For

all experiments, the number of Langevin steps per noise level T = 256, except for Figure 5.7

where that parameter is varied to highlight changes in likelihood. The learning rate multiper

δ = 0.05 for all experiments. The Markov window w is based on the underlying architecture.

When training the fine-tuned noise models, all training hyperparameters are kept the same as

the original WaveNet implementation. For the WaveNet implementation used in this paper,

this is 6139 samples which is roughly 0.3 seconds at a 22kHz sample rate Please refer to the

WaveNet paper or the public WaveNet implementation for training details.

As discussed by [van den Oord et al., 2016a], 8-bit µ-law encoding results in a higher

fidelity representation of audio than 8-bit linear encoding. For most experiments, the ob-

servation constraint y = g(x) is still linear even under a µ-law encoding of x. However,

6https://github.com/r9y9/wavenet_vocoder.

https://github.com/r9y9/wavenet_vocoder

159

0 2,000 4,000 6,000 8,000 10,000

Langevin Iterations per Noise Level

3

4

5

6

7

8

9

10

L
ik

e
li
h

o
o
d

 (
b

it
s
/d

im
)

PixelCNN++ PnF
PixelCNN++ Ancestral

Method

0 400 800 1,200 1,600 2,000

Langevin Iterations per Noise Level

0

2

4

6

8

10

12

14

L
ik

e
li
h

o
o
d

 (
b

it
s
/d

im
)

Piano PnF
Piano Ancestral
VCTK PnF
VCTK Ancestral

Method

Figure 5.7: As the number of Langevin iterations T increases, the log-likelihood of se-
quences generated by stochastic Langevin sampling approaches the log-likelihood of test
set sequences. Left: sampling from a PixelCNN++ model trained on CIFAR-10. Right:
sampling from WaveNet models trained on the Supra Piano and VCTK speech datasets.

for source separation, the constraint y = x1 + x2 is no longer linear under µ-law encoding.

Consequently, we use an 8-bit linear encoding of x for source separation experiments to

avoid a change of variables calculation. To facilitate a fair comparison, all ground truths and

baselines shown in the demos use the corresponding µ-law or linear 8-bit encoding.

5.3.3 Quality of Generated Samples

To evaluate the quality of samples generated by Langevin sampling, we follow a similar pro-

cedure to Holtzman et al. [2020]. We compare log-likelihoods, calculated using the noiseless

model p(x), of sequences generated by Langevin sampling to sequences generated by ances-

tral sampling from the lowest-noise model pσL(x). Because Langevin-sampled sequences are

continuous, we quantize these samples to 8-bit values when evaluating their likelihood under

the noiseless model. We consider the sampling procedure to be successful if it generates

sequences with comparable log-likelihoods to ancestral generations.

In Figure 5.7 we present quantitative results for Langevin sampling using an unconditional

PixelCNN++ model of CIFAR-10, and a spectrogram-conditioned WaveNet model of both

voice and piano datasets. We evaluate 1, 000 generations (length n = 50, 000 sequences for

160

Dataset p(xtest) pσL(xtest) pσL(xLangevin)
MNIST 0.5 3.6 3.6
CIFAR-10 3.4 4.5 4.7
LSUN (bed) 2.4 4.2 4.4
LSUN (crh) 2.7 4.4 4.4

Table 5.1: The mean log-likelihood under the minimal-noise Glow prior pσL(x) for the test
set xtest, and for samples of 100 Langevin separations xLangevin. The log-likelihood of each
test set under the noiseless prior p(xtest) is reported for reference.

the WaveNet models) using various numbers of Langevin iterations, and report the median

log likelihood of quantizations of these sequences under the noiseless model. Asymptoti-

cally, as the iterations T of Langevin dynamics increase, the likelihood of Langevin samples

approaches the likelihood of ancestral samples. Generated audio samples for various T are

available on the website.

In Table 5.1, we consider the quality of conditional samples generated for the source

separation task using Glow as a prior. How do the probabilities of sources xLangevin generated

by Langevin posterior sampling compare to the probabilities of data xtest taken directly from

a dataset’s test set? Because we anneal the noise to a fixed level σL > 0, we find it most

informative to ask this question using the minimal-noise, fine-tuned prior pσL(x). As seen

in Table 5.1, the outputs of the Langevin posterior sampler are generally comparable in log-

likelihood to test set images under pσL(x); Langevin posterior sampling separates a mixture

into components that are typical under the prior. The bits/dim reported in Column 2 of Table

5.1 are substantially higher than the standard test-set log-likelihoods reported in Column 1

because, even at σ = 0.01, the Gaussian noise injects considerable (albeit imperceptible)

entropy into the models.

5.3.4 Speed and Parallelism

Ancestral sampling has O(n) serial runtime in the length n of the generated sequence. Using

the stochastic Langevin sampler described in Section 5.1.4, serial runtime is O(T), where T

is the number of Langevin iterations at each level of smoothing. We find empirically that

161

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Length of Generated Signal (seconds)

0

50

100

150

200

250

300

350

In
fe

r
e
n

c
e
 T

im
e
 (

m
in

u
te

s
)

PnF 1 GPU

PnF 2 GPUs

PnF 4 GPUs

PnF 8 GPUs

Ancestral

Algorithm

Generation Speed

Figure 5.8: Stochastic Langevin sampling can be parallelized across multiple devices, result-
ing in faster inference time than ancestral sampling. Beyond a threshold level of computation,
Langevin sampling time is inversely proportional to the number of devices.

we can set T independent of n, and therefore the theoretical serial runtime of stochastic

Langevin sampling is constant as a function of sequence length. In practice, we do not have

an infinite supply of parallel devices, so the serial runtime of stochastic Langevin sampling

grows inversely proportional to the number of devices. This behavior is demonstrated in

Figure 5.8 for WaveNet sampling using a cluster of 8 Nvidia Titan Xp GPU’s and T = 256.

Each GPU can calculate Equation (5.18) for a block of c = 50, 000 samples (approximately

2.3 seconds of audio).

Stochastic Langevin sampling depends upon asynchronous writes being sparse so that

memory overwrites, when two workers update overlapping blocks, are rare. This situation is

analogous to the sparse update condition required for Hogwild! If blocks are length c and the

number of devices is substantially less than n/c, then updates are sufficiently sparse. But if

the number of devices is larger than n/c, memory overwrites become common, and sampling

fails to converge. This imposes a floor on generation time determined by c, exhibited in

162

Figure 5.8. We cannot substantially reduce this floor by decreasing c because of the tradeoff

between c and the model’s Markov window w described in Section 5.1.4.

In general, annealed Langevin sampling becomes faster than ancestral sampling for au-

toregressive models of very long sequences n, in which case the stochastic variant of the

Langevin sampler becomes necessary in order to distribute the calculation of n conditional

likelihoods. For autoregressive models of short sequences, accurate unconditional samples

can be achieved more quickly with the ancestral sampler. For example, unconditional 32×32

CIFAR-10 generation using the PixelCNN++ mode requires T = 10, 000 Langevin iterations

per noise level (Figure 5.7) for accurate samples; annealing through L = 20 levels (Section

5.3.2) requires a total of L×T = 200, 000 serial queries to the PixelCNN++ model, far more

than n = 3 × 32 × 32 serial queries to PixelCNN++ for ancestral sampling of a CIFAR-10

size image. Note also that PixelCNN++ conditions on a full image (w = n; see Section

5.1.4) so the stochastic variant of Langevin sampling is not applicable to this model.

5.3.5 Source Separation

For our quantitative source separation experiments, we consider the recovery of two unob-

served sources x1,x2 ∈ X n = R2×n given an observed mixture y = g(x) = 1
2
x1 + 1

2
x2 with

equal weights on components. As outlined in Section 5.2, we view source separation as a

linear Bayesian inverse problem given a prior p(x). Assuming that x1 and x2 are chosen

independently,

p(x) = p(x1,x2) = p1(x1)p2(x2). (5.30)

Note that we can also apply Langevin posterior sampling to separation of dependent sources,

but in this case we require a joint model over components; an example of separation of

dependent sources is presented in Section 5.3.6.

We consider to variants of the source separation task: class agnostic separation, where

mixtures are generated from two components x1 and x2 drawn from the same distribution,

and and class conditional separation, where the components are drawn from different dis-

163

Original Images

Mixture (Input)

Separated Images

Mixture
(Input)

OriginalSeparated

Figure 5.9: Separation results for mixtures of four images from the MNIST dataset (Left) and
two images from the CIFAR-10 dataset (Right), using annealed Langevin sampling with the
NCSN Song and Ermon [2019] generative model as a prior over images. We draw attention to
the central panel of the MNIST results (highlighted in orange), which shows how sometimes
a mixture can be plausibly separated in multiple ways.

tributions. For MNIST and CIFAR-10 experiments, we consider both class-agnostic and

class-conditional separation tasks. For class-conditional separation, we partition the test

sets of these datasets into two groupings: digits 0− 4 and 5− 9 for MNIST, “animals” and

“machines” for CIFAR-10. For LSUN we consider class-conditional separation, using the

churches and bedrooms classes. For audio, we consider class-conditional separation using

the VCTK voice dataset and Supra piano dataset as classes.

Several select examples of class-agnostic visual source separation are shown in Figure

5.9. In the class-agnostic case, separation results are only defined up to a permutation

of the components; to facilitate visual comparisons, visual separation results are sorted to

minimize PSNR with the original images. Likewise, we evaluate PSNR for class-agnostic

separation using the permutation of the components that results in minimal PSNR. This

convention usually results in the separated components being visually paired with the most

similar original components, but not always; the alert reader may have noticed that the

yellow and silver car mixture in Figure 5.9 appears to have been displayed in reverse order.

This happens because the separated yellow car component takes the light sky from the

164

Original

Mixture (Input)

Separated

Figure 5.10: 64 × 64 class-conditional LSUN separation results using Glow as a prior. One
mixture component is sampled from the LSUN churches category, and the other component
is sampled from LSUN bedrooms.

original silver car component, and the lightness of the sky dominates the PSNR metric. For

class-conditional separation, the symmetry of components is broken by the distinct priors,

so no post-processing is required for visualization or evaluation. See, for example, the LSUN

results in Figure 5.10, for which the priors naturally sort separated components into churches

and bedrooms.

There are two different ways to apply a prior for class-conditional separation. In the class

agnostic setting, x1 and x2 are drawn from the same distribution (the empirical distribution

of the test set) so it makes sense to use a single prior p = p1 = p2. In the class conditional

setting, we could potentially use separate priors over components x1 and x2. For the MNIST

and CIFAR-10 experiments, we use pre-trained models trained on unconditional distribution

of the training data for both the class agnostic and class conditional setting. It is possible that

better results could be achieved in the class conditional setting by re-training the models

on class conditional training data. For LSUN, the authors of Glow provide separate pre-

trained models for the Church and Bedroom categories, so we are able to demonstrate class-

165

conditional LSUN separations using distinct priors in Figure 5.10.

Visual Separation Baselines. On the MNIST dataset, we compare to results reported

for the GAN-based “S-D” method [Kong et al., 2019] and the fully supervised version of

Neural Egg separation “NES” [Halperin et al., 2019]. The S-D method is a class-agnostic

separation algorithm, whereas the NES method is class-conditional. To the best of our

knowledge there are no previously reported quantitative metrics for CIFAR-10 separation,

so as a baseline we ran Neural Egg separation on CIFAR-10 using the authors’ published

code. We remark that we cannot compare our algorithm to the separation-like task reported

for CapsuleNets [Sabour et al., 2017]. The segmentation task discussed in that work is similar

to source separation, but the mixtures used for the segmentation task are constructed using

the non-linear threshold function h(x) = max(x1 + x2, 1), in contrast to our linear function

g. While extending the techniques of this paper to non-linear relationships between x and

m is intriguing, we leave this to future this work.

We also consider results for a simple baseline, “Average,” that separates a mixture y

into two 50% masks x1 = x2 = y/2. This is a surprisingly competitive baseline. Observe

that if we had no prior information about the distribution of components, and we measure

separation quality by PSNR, then by a symmetry argument setting x1 = x2 is the optimal

separation strategy in expectation. In principle we would expect Average to perform very

poorly under IS/FID, because these metrics purport to measure similarity of distributions

and mixtures should have little or no support under the data distribution. But we find that

IS and FID both assign reasonably good scores to Average, presumably because mixtures

exhibit many features that are well supported by the data distribution. This speaks to well-

known difficulties in evaluating generative models [Theis et al., 2016] and could explain the

strength of “Average” as a baseline.

Visual Source Separation. Quantitative results for MNIST image separation are re-

ported in Table 5.2, and a panel of visual separation results are presented in Figure 5.12.

For quantitative results, we report mean PSNR over separations of 12, 000 separated compo-

nents. The distribution of PSNR for class agnostic MNIST separation is visualized in Figure

166

5 10 15 20 25 30 35 40 45

Peak Signal-to-Noise Ratio (PSNR)

0.000

0.025

0.050

0.075
D

en
si

ty

Figure 5.11: The empirical distribution of PSNR for 5,000 class agnostic MNIST digit sep-
arations using BASIS with the NCSN prior (see Table 5.2 for comparison of the central
tendencies of this and other separation methods).

Algorithm Class Split Class Agnostic
Average 14.8 14.9
NMF 16.0 9.4
S-D - 18.5
BASIS (Glow) 22.9 22.7
NES 24.3 -
BASIS (Glow, 10x) 27.7 27.1
BASIS (NCSN) 29.5 29.3

Table 5.2: PSNR results for separating 6,000 pairs of equally mixed MNIST images. For
class split results, one image comes from label 0 − 4 and the other comes from 5 − 9. We
compare to S-D Kong et al. [2019], NES Halperin et al. [2019], convolutional NMF (class
split) Halperin et al. [2019] and standard NMF (class agnostic) Kong et al. [2019].

5.11. We observe that approximately 2/3 of results exceed the mean PSNR of 29.5, which

to our eyes is visually indistinguishable from ground truth.

A natural approach to improve separation performance is to sample multiple x ∼ p(·|y)

for a given mixture m. A major advantage of models like Glow, that explicitly parameter-

ize the prior p(x), is that we can approximate the maximum of the posterior distribution

with the maximum over multiple samples. By construction, Langevin posterior sampling

approximately satisfies g(x) = y, so for the noiseless model p(x|y) ∝ p(x). We demonstrate

the effectiveness of resampling in Table 5.2 (Glow, 10x) by comparing the expected PSNR

of x ∼ p(·|y) to the expected PSNR of arg maxi p(xi) over 10 samples x1, . . . ,x10 ∼ p(·|y).

Even moderate resampling dramatically improves separation performance. Unfortunately

167

NCSN

Mixture

Glow
Glow

(Resampling) Original

NCSN

Mixture

Glow
Glow

(Resampling) Original

Figure 5.12: Uncurated class-agnostic separation results using: (1) samples from the posterior
with Glow as a prior (2) an approximate MAP estimate using the maximum over 10 samples
from the posterior with Glow as a prior (3) samples from the posterior with NCSN as a prior.

this approach cannot be applied to the otherwise superior NCSN model, which does not

model explicit likelihoods p(x).

Without any modification, we can apply Langevin sampling can separate mixtures of

k > 2 component images. We contrast this with regression-based methods, which require re-

training to target varying numbers of components. Figure 5.9 shows the results of Langevin

posterior sampling using the NCSN prior applied to mixtures of four randomly selected

MNIST images. For more mixture components, we observe that identifiability of ground

168

Algorithm Inception Score FID
Class Split

NES 5.29 ± 0.08 51.39
Langevin (Glow) 5.74 ± 0.05 40.21
Langevin (PixelCNN++) 5.86 ± 0.07 40.66
Average 6.14 ± 0.11 39.49
Langevin (NCSN) 7.83 ± 0.15 29.92
Class Agnostic

Langevin (Glow) 6.10 ± 0.07 37.09
Langevin (PixelCNN++) 6.14 ± 0.15 37.89
Average 7.18 ± 0.08 28.02
Langevin (NCSN) 8.29 ± 0.16 22.12

Table 5.3: Quantitative results for visual sources separation on CIFAR-10. Results are
measured using Inception Score / FID Score of 25,000 separations (50,000 separated images)
of two overlapping CIFAR-10 images. In Class Split one image comes from the category of
animals and other from the category of machines. The NES baseline results are computed
using the procedure described by Halperin et al. [2019].

truth sources begins to break down. This is illustrated by looking at the central item in each

panel of Figure 5.9 (highlighted in orange).

Quantitative results for CIFAR-10 separation are tabulated in Table 5.3. Of the three

priors used for Langevin posterior separation, we see that Glow and PixelCNN++ perform

comparably (with PixelCNN++ performing slightly better) with NCSN performing sub-

stantially better. This is consistent with the unconditional performance of these generative

models. Given the strong correlation between the strength of a generative model and the

quality of separations using that model as a prior, we anticipate that more recent innovations

in autoregressive image models based on transformers [Parmar et al., 2018, Child et al., 2019]

will lead to stronger separation results once implementations of these models that match the

results reported in these papers become public.

Qualitative results for LSUN separation are visualized in Figure 5.10. While the sepa-

ration results in Figure 5.10 are imperfect, Table 5.1 shows that the mean log-likelihood of

the separated components is comparable to the mean log-likelihood that the model assigns

to images in the test set. This suggests that the model is incapable of distinguishing these

169

Algorithm Test SI-SDR (dB)
All Piano Voice

Langevin (WaveNet) 17.07 13.92 20.25
Conv-Tasnet 17.48 20.02 15.50
Demucs 14.18 16.67 12.75

Table 5.4: Quantitative results for audio source separation of mixtures of Supra piano and
VCTK voice samples. Results are measured using SI-SDR (higher is better).

separations from better results, and the imperfections are attributable to the quality of the

model rather than to the separation algorithm. This is encouraging, because it suggests that

the artifacts are due to the Glow model rather than the Langevin separation algorithm, and

that better separation results will be achievable with improved generative models.

Audio Separation. We compare Langevin audio separation to results using the De-

mucs [Défossez et al., 2019] and Conv-Tasnet [Luo and Mesgarani, 2019] source separation

models. Both Demucs and Conv-Tasnet are supervised models, trained specifically for the

source separation task, that learn to output source components given an input mixture.

An advantage of Langevin sampling is that it does not rely on pairs of source signals and

mixes like these supervised methods. We train the supervised models to separate mixtures

of VCTK and Supra Piano samples and measure results using the standard Scale Invariant

Signal-to-Distortion Ratio (SI-SDR) metric for audio source separation [Roux et al., 2019].

All mixtures are created with 1/2 gain on each source component; due to the natural vari-

ation of loudness of training data, we find that our model generalizes to mixtures without

exactly 1/2 gain on each source; source separation result on the website demonstrate that

we can separate real-world mixtures, even when we have no information about the relative

loudness of each component. Results in Table 5.4 show that Langevin sampling is competi-

tive with these specialized source separation models. Qualitative comparisons are provided

in the supplement. We do not compare results on the popular MusDB dataset [Rafii et al.,

2017] because this dataset has insufficient single-channel audio to train WaveNet generative

models.

170

Grayscale (Input) Colorization Original

Figure 5.13: Colorizing CIFAR-10 images. Left: original CIFAR-10 images. Middle:
greyscale conversions of the images on the left. Right: imputed colors for the greyscale
images, found by BASIS using NCSN as a prior.

5.3.6 Image Colorization

We can also view image colorization Levin et al. [2004], Zhang et al. [2016] as a source

separation problem by interpreting a grayscale image as a mixture of the three color channels

of an image x = (xr,xg,xb) with

g(x) = (xr + xg + xb)/3. (5.31)

Unlike our previous separation problems, the channels of an image are clearly not indepen-

dent, and the factorization of p given by Equation 5.30 is unwarranted. But conveniently,

a generative model trained on color CIFAR-10 images itself models the joint distribution

p(x) = p(xr,xg,xb). Therefore, the same pre-trained generative model that we use to sepa-

rate images can also be used to color them.

Qualitative colorization results are visualized in Figure 5.13. The non-identifiability of

ground truth is profound for this task (see Section 5.2.2 for discussion of identifiability). We

draw attention to the two cars in the middle of the panel: the white car that is colored

yellow by the algorithm, and the blue car that is colored red. The colors of these specific

cars cannot be inferred from a greyscale image; the best an algorithm can do is to choose a

reasonable color, based on prior information about the colors of cars.

171

Data Distribution Inception Score FID Score
Input Grayscale 8.01 ± 0.10 68.52
BASIS (Glow) 8.69 ± 0.15 28.70
BASIS (NCSN) 10.53 ± 0.17 11.58
CIFAR-10 Test Set 11.24 ± 0.12 0.00

Table 5.5: Inception Score / FID Score of 50,000 colorized CIFAR-10 images. As measured
by IS/FID, the quality of NCSN colorizations nearly matches CIFAR-10 itself.

Quantitative coloring results for CIFAR-10 are presented in Table 5.5. We remark that

the IS and FID scores for coloring are substantially better than the IS and FID scores

of 8.87 and 25.32 respectively reported for unconditional samples from the NCSN model;

conditioning on a greyscale image is enormously informative. Indeed, the Inception Score of

NCSN-colorized CIFAR-10 is close to the Inception Score of the strongest possible baseline:

the CIFAR-10 test set.

5.3.7 Super-Resolution

The super-resolution problem asks us to recover unobserved data x given a down-sampled

observation y = g(x). For 1-dimensional (audio) super-resolution, x ∈ Rn, y ∈ Rn/r, and

yi = xri [Kuleshov et al., 2017, Eskimez et al., 2019]. For 2-dimensional (image) super-

resolution x ∈ Rn = Rk×k×3, y ∈ Rk/r×k/r×3, and yi,j = xri,rj [Dahl et al., 2017, Zhang et al.,

2018b]. Like source separation, super-resolution can be viewed as a Bayesian linear inverse

problem, and we can recover solutions to this problem via Langevin sampling. In the audio

domain, the down-sampling operation g(x) can be interpreted as a low-pass filter.

We measure audio super-resolution performance using peak signal-to-noise ratio (PSNR)

and compare against a deep learning baseline [Kuleshov et al., 2017] as well as a simple

cubic B-spline. Quantitative audio results are presented in Table 5.6, which show that

we outperform these baselines on piano data and produce similar quality reconstructions

on voice data. Qualitative audio samples are available in the supplement, where we also

show examples of 32x super resolution - beyond the reported ability of existing methods.

Select qualitative visual results for image super-resolution using a PixelCNN++ model are

172

Piano Voice

Ratio Spline KEE Langevin Spline KEE Langevin

4x 23.07 22.25 29.78 15.8 16.04 15.47
8x 13.58 15.79 23.49 10.7 11.15 10.03
16x 7.09 6.76 14.23 6.4 7.11 5.32

Table 5.6: Quantitative results for audio super-resolution at three different scales on the Supra
piano and VCTK voice datasets. Results are measured using PSNR (higher is better). KEE refers
to the method described by Kuleshov et al. [2017]

presented in Figure 5.6.

5.3.8 Inpainting

Inpainting problems involve recovering unobserved data x given a masked observation g(x) =

m � x, where m ∈ {0, 1}n [Adler et al., 2012, Pathak et al., 2016]. This family of prob-

lems includes completion tasks (finishing a sequence given a prime) pre-completion tasks

(generating a prefix to a sequence) and outpainting tasks. Ancestral sampling can only be

applied to completion tasks, whereas Langevin sampling can be used to fill in any pattern of

masked occlusions. Qualitative results for audio inpainting are available in the supplement.

Select qualitative results for image inpainting using a PixelCNN++ model are presented in

Figure 5.6.

5.4 Conclusion

In Section 5.1 of this chapter, we proposed a posterior sampler (with a novel smoothing

procedure for discretized autoregressive models) that we applied to linear likelihood models

p(y|x) with a deep generative prior p(x) in Sections 5.2 and 5.3. Nothing about the methods

proposed in Section 5.1 requires a linear relationship between x and y. If the likelihood p(y|x)

is instead given by a deep generative model, then we simply replace analytic calculations of

the gradients ∇x log pσ(y|x̃) with gradients calculated using automatic differentiation. The

smoothed likelihoods pσ(y|x̃) described by Equation (5.9) can themselves be approximated

using the same fine-tuning procedure used to smooth pσ(x̃), as described in Section 5.1.2.

173

This raises the possibility of using a family of likelihoods p(yi|x) to control the outputs of

a generative model p(x), ranging from the fine-grained control of a mixture constraint (which

imposes strong conditions on the value of every sample in x), to more abstract and high-level

control induced by a classifier. For example, we can imagine using the composer attribution

classifier developed in Chapter 4, Section 4.3 to steer the outputs of the unconditional music

composition model developed in Chapter 4, Section 4.2 to generate compositions in the

style of a particular composer. Posterior sampling with a likelihood composed of multiple,

independent classifiers and constraints could provide us with a set of high-level knobs for

steering the output of a generative model towards a desired artistic vision.

Finally, we observe that while the visual source separation results presented in this chap-

ter are state-of-the-art, the audio are merely competitive with state-of-the-art models. In

Section 5.3.5 (in particular, Table 5.3) we observed that, for visual separation, quality of

our algorithm varied substantially with the strength of the generative model p(x) used as

a prior. In contrast, in the audio domain we demonstrate results for only a single model,

WaveNet, which quite old by the standards of deep generative models. Based on the trend

for visual source separation, we anticipate that results for audio source separation using the

posterior sampling approach will dramatically improve as stronger generative audio models

become available.

174

Chapter 6

CONCLUSION AND PERSPECTIVES

In the preceding chapters, we studied three problems in music and signal processing: mu-

sic transcription (Chapter 3), music composition (Chapter 4), and source separation (Chapter

5). In Chapter 1, we motivated these problems by their widespread recognition as founda-

tional questions in the music information retrieval field. But we should also consider why

these problems are considered foundational, and how the methods developed in this disserta-

tion (or more mature future variants of these methods) could find their way into user-facing

tools for communities of musicians, audio engineers, composers, and music educators.

When we consider applications of models in practical tools, we should make a distinction

between analytical tools that provide some form of information to a user, and synthetic tools

that assist a user in a creative process. This dissertation has largely focused on generative

models, which are most naturally applied to the synthesis problems faced by composers,

producers, and audio engineers. Musicians and music educators may be more interested in

analytical tools that could provide feedback about a musical performance, or explain the

structure of a musical composition. But this broad characterization of interests is not sharp:

a solo musician, for example, might be interested in a generative model that synthesizes an

automatic real-time accompaniment to their musical performance [Kaliakatsos-Papakostas

et al., 2012]. Conversely, audio engineering tools increasingly incorporate analytical models

to facilitate music production: for example, Apple’s Logic Pro software incorporates an

analytical beat tracking model [Ellis, 2007], which can be used to synchronize multiple stems

of audio to a common tempo (see Logic Pro’s Smart Tempo technology).

The music transcription models developed in Chapter 3 blur the distinction between

tools for analysis and synthesis. Music transcription has already been commercialized in

175

audio engineering software, including Celemony’s Melodyne product, which we evaluated

in Section 3.3.6. Like beat tracking annotations, a transcript can provide insights into the

content of an audio recording for a music producer, which they can then act on (perhaps using

another generative model) to edit the recording. Looking to the future, accurate transcription

software could become a valuable tool for music education. While interaction with an expert

educator is essential to musical education, contact with an expert is intermittent: perhaps

an hour a week, or less for economically disadvantaged students. Automated tools that

transcribe and analyze a musical performance could offer student musicians a tight feedback

loop in their practice.

In Chapter 4 we developed both generative models that synthesize musical scores (Sec-

tion 4.2), and discriminative models for analyzing scores (Section 4.3). As we discussed in

Chapter 1, there is little artistic value in the outputs of an unconditional generative model.

But there is substantial community interest in models that can be steered by user input. A

conditionally-generated composition is a human artistic creation, where the artistic process

simply happens at a higher level of abstraction: rather than specifying individual notes,

the artist specifies constraints and attributes of the desired composition. Simple generative

models, for example arpeggiators [Robinson and Howell, 1983], are already popular building-

blocks of music creation found in popular production tools including Logic Pro and Ableton

Live. More sophisticated conditional generative models, that can generate more sophisticated

and varied motifs, will surely be integrated into future music composition workflows.

The method developed in Chapter 5 for guiding and controlling the outputs of a gen-

erative model has numerous potential applications to music synthesis (in conjunction with

an unconditional generative model, e.g., the model developed in Chapter 4). Concretely, we

showed how this method can be used to synthesize audio subject to a mixture constraint,

leading to an algorithm for source separation. Source separation has diverse applications in

a range of fields including wireless communications [Madhow, 1997], astrophysics [Funaro

et al., 2003], and seismology [Zhou et al., 2016]. In the music domain, we can imagine fu-

ture applications of source separation as a production tool: high-quality source separation

176

tools would allow engineers and producers to decompose (de-mix) an audio recording into a

collection of sources (stems), process these stems in isolation, remove undesired stems (e.g.,

an errant cough), and re-mix the stems to create an updated audio recording.

Thinking more broadly about a future with robust solutions to the problems addressed

in this dissertation, we can imagine a 21st century audio production environment powered

by data-driven models. Current audio processing techniques are largely powered by a digital

signal processing toolbox. While these techniques can be robust and powerful, they are

also low-level metaphors for engaging with music. Beyond an arpeggiator, we can ask for

a model that can help us find interesting chord progressions for our melody [Huang et al.,

2016]. Beyond autotune, we can ask for a model that re-styles our voice with a particular

vocal quality. These desires can only be met with data-driven generative models trained on

large collections of music that capture the range and diversity of human expression.

The largest obstacle to this vision may be sociological, rather than technical: audio

recordings are subject to copyright. The legal status of creations generated by models trained

on copyrighted data remains uncertain. Are these creations derivative works? Are the

authors of the recordings used for training models entitled to royalties? Generative models

are known to memorize training data [Carlini et al., 2019] and a generative model’s creations

may unintentionally plagiarize copyrighted material (to be clear, human composers are also

susceptible to this problem). For the experiments described in this dissertation, we largely

avoided copyright concerns: the MusicNet dataset introduced in Chapter 3 was deliberately

constructed using permissively licensed recordings, which release rights to derivative works

and redistribution. The classical scores considered in Chapter 4 are hundreds of years old

and have entered the public domain. The WaveNet models in Chapter 5 were trained using

small-scale academic datasets. But future high-quality, production iterations of these models

will require large-scale datasets. Use of copyrighted material to train these models may

become unavoidable and legal considerations must be taken into account. Idealistically, I

hope our legal frameworks evolve in a way that respects the rights of artists and protects

their livelihood, while also fostering a supportive environment for data-driven creative tools.

177

BIBLIOGRAPHY

Amir Adler, Valentin Emiya, Maria G. Jafari, Michael Elad, Rémi Gribonval, and Mark D.

Plumbley. Audio inpainting. IEEE/ACM Transactions on Audio, Speech, and Language

Processing, 20(3):922–932, 2012. 5.3.8

Moray Allan and Christopher K. I. Williams. Harmonising chorales by probabilistic inference.

In Proceedings of the 17th Advances in Neural Information Processing Systems (Neurips),

pages 25–32, 2004. 4.2.1

Yoko Anan, Kohei Hatano, Hideo Bannai, Masayuki Takeda, and Ken Satoh. Polyphonic

music classification on symbolic data using dissimilarity functions. In Proceedings of the

13th International Society for Music Information Retrieval Conference (ISMIR), pages

229–234, 2012. 4.3.1

Mart́ın Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial

networks. In 34th International Conference on Machine Learning (ICML), volume 70 of

Proceedings of Machine Learning Research, pages 214–223, 2017. 2.5

Andreas Arzt and Stefan Lattner. Audio-to-score alignment using transposition-invariant

features. In Proceedings of the 19th International Society for Music Information Retrieval

Conference (ISMIR), pages 592–599, 2018. 3.1.2, 3.1.3

Mert Bay, Andreas F. Ehmann, and J. Stephen Downie. Evaluation of multiple-f0 estima-

tion and tracking systems. In Proceedings of the 10th International Society for Music

Information Retrieval Conference (ISMIR), pages 315–320, 2009. 3

Anthony J Bell and Terrence J Sejnowski. An information-maximization approach to blind

separation and blind deconvolution. Neural Computation, 7(6):1129–1159, 1995. 5.2.1

178

Pierre C Bellec, Guillaume Lecué, Alexandre B Tsybakov, et al. Slope meets lasso: improved

oracle bounds and optimality. The Annals of Statistics, 46(6B):3603–3642, 2018. 5.2.2

Laurent Benaroya, Frédéric Bimbot, and Rémi Gribonval. Audio source separation with a

single sensor. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 14

(1):191–199, 2006. 1, 5.2.1

Emmanouil Benetos and Simon Dixon. A shift-invariant latent variable model for automatic

music transcription. Computer Music Journal, 36(4):81–94, 2012. 3.3.6

Emmanouil Benetos, Simon Dixon, Dimitrios Giannoulis, Holger Kirchhoff, and Anssi Kla-

puri. Automatic music transcription: Breaking the glass ceiling. In Proceedings of the

13th International Society for Music Information Retrieval Conference (ISMIR), pages

379–384, 2012. 1

Emmanouil Benetos, Simon Dixon, Dimitrios Giannoulis, Holger Kirchhoff, and Anssi Kla-

puri. Automatic music transcription: challenges and future directions. Journal of Intelli-

gent Information Systems, 2013. 1, 3.3.1

Emmanouil Benetos, Simon Dixon, Zhiyao Duan, and Sebastian Ewert. Automatic music

transcription: An overview. IEEE Signal Processing Magazine, 36(1):20–30, 2019. 1

Yoshua Bengio and Samy Bengio. Modeling high-dimensional discrete data with multi-layer

neural networks. In Proceedings of the 12th Advances in Neural Information Processing

Systems (Neurips), pages 400–406, 1999. 2.3

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. A neural prob-

abilistic language model. Journal of Machine Learning Research (JMLR), 3:1137–1155,

2003. 2.3

Gregory W. Benton, Marc Finzi, Pavel Izmailov, and Andrew Gordon Wilson. Learning

invariances in neural networks from training data. In Proceedings of the 33rd Advances in

Neural Information Processing Systems (Neurips), 2020. 3.3.5

179

Rachel M. Bittner, Brian McFee, Justin Salamon, Peter Li, and Juan Pablo Bello. Deep

salience representations for F0 estimation in polyphonic music. In Proceedings of the 18th

International Society for Music Information Retrieval Conference (ISMIR), pages 63–70,

2017. 3.3.1

Harold S Black and JO Edson. Pulse code modulation. Transactions of the American

Institute of Electrical Engineers, 66(1):895–899, 1947. 2.1

Andrew Blake and Andrew Zisserman. Visual Reconstruction. MIT Press, 1987. 5.1.1, 5.1.2

Ashish Bora, Ajil Jalal, Eric Price, and Alexandros G. Dimakis. Compressed sensing us-

ing generative models. In 34th International Conference on Machine Learning (ICML),

volume 70 of Proceedings of Machine Learning Research, pages 537–546, 2017. 5.2

Nicolas Boulanger-Lewandowski, Yoshua Bengio, and Pascal Vincent. Modeling temporal

dependencies in high-dimensional sequences: Application to polyphonic music generation

and transcription. In 29th International Conference on Machine Learning (ICML), Pro-

ceedings of Machine Learning Research, 2012. (document), 4.4, 4.5, 4.2.1, 4.2.3

G. E. P. Box and Mervin E. Muller. A note on the generation of random normal deviates.

The Annals of Mathematical Statistics, 29:610–611, 1958. 2.2

Andrew Brinkman, Daniel Shanahan, and Craig Sapp. Musical stylometry, machine learning

and attribution studies: A semi-supervised approach to the works of josquin. In Proceedings

of the Biennial International Conference on Music Perception and Cognition, pages 91–97,

2016. (document), 4.3, 4.3.1, 4.3.4, 4.3.5, 4.9

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla

Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini

Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya

Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen,

Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner,

180

Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are

few-shot learners. In Proceedings of the 33rd Advances in Neural Information Processing

Systems (Neurips), 2020. 4.2.2, 4.2.5, 5.1

Yuri Burda, Roger B. Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders.

In 4th International Conference on Learning Representations (ICLR). OpenReview.net,

2016. 2.4, 2.4

Giuseppe Buzzanca. A supervised learning approach to musical style recognition. In 2nd

International Conference on Music and Artificial Intelligence, page 167, 2002. 4.3, 4.3.1,

4.3.2

Julio José Carabias-Orti, Francisco J. Rodŕıguez-Serrano, Pedro Vera-Candeas, Nicolás Ruiz-

Reyes, and Francisco J. Cañadas-Quesada. An audio to score alignment framework using

spectral factorization and dynamic time warping. In Proceedings of the 16th International

Society for Music Information Retrieval Conference (ISMIR), pages 742–748, 2015. 3.1.2

Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej Kos, and Dawn Song. The secret

sharer: Evaluating and testing unintended memorization in neural networks. In 28th

USENIX Security Symposium, pages 267–284. USENIX Association, 2019. 6

CCITT. Pulse code modulation (pcm) of voice frequencies. International Telecommunication

Union, 1988. 5.3.1

Celemony. Melodyne. http://www.celemony.com/en/melodyne/what-is-melodyne. 3.3.6,

3.3.5

Jen-Hao Rick Chang, Chun-Liang Li, Barnabás Póczos, and B. V. K. Vijaya Kumar. One

network to solve them all - solving linear inverse problems using deep projection models.

In IEEE International Conference on Computer Vision (ICCV), pages 5889–5898, 2017.

5.2

http://www.celemony.com/en/melodyne/what-is-melodyne

181

Nanxin Chen, Yu Zhang, Heiga Zen, Ron J. Weiss, Mohammad Norouzi, and William Chan.

Wavegrad: Estimating gradients for waveform generation. In 9th International Conference

on Learning Representations (ICLR). OpenReview.net, 2021. 2.7, 5.3.2

E Colin Cherry. Some experiments on the recognition of speech, with one and with two ears.

The Journal of the Acoustical Society of America, 25(5):975–979, 1953. 1

Kin Wai Cheuk, Kat Agres, and Dorien Herremans. The impact of audio input representa-

tions on neural network based music transcription. In International Joint Conference on

Neural Networks (IJCNN), pages 1–6. IEEE, 2020a. (document), 3.11

Kin Wai Cheuk, Yin-Jyun Luo, Emmanouil Benetos, and Dorien Herremans. The effect of

spectrogram reconstruction on automatic music transcription: An alternative approach to

improve transcription accuracy. In Proceedings of the 25th International Conference on

Pattern Recognition (ICPR), pages 9091–9098. IEEE, 2020b. 3.3.1

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with

sparse transformers. OpenAI blog, 2019. 5.3.5

Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C. Courville, and

Yoshua Bengio. A recurrent latent variable model for sequential data. In Proceedings of

the 28th Advances in Neural Information Processing Systems (Neurips), pages 2980–2988,

2015. 2.4

Elizabeth Clark, Anne Spencer Ross, Chenhao Tan, Yangfeng Ji, and Noah A. Smith. Cre-

ative writing with a machine in the loop: Case studies on slogans and stories. In Proceedings

of the 23rd International Conference on Intelligent User Interfaces (IUI), pages 329–340,

2018. 1

Pierre Comon. Independent component analysis, A new concept? Signal processing, 36(3):

287–314, 1994. 5.2.1

182

Darrell Conklin. Music generation from statistical models. In Proceedings of the AISB 2003

Symposium on Artificial Intelligence and Creativity in the Arts and Sciences, pages 30–35,

2003. 1, 4.2

Arshia Cont, Diemo Schwarz, Norbert Schnell, and Christopher Raphael. Evaluation of

real-time audio-to-score alignment. In Proceedings of the 8th International Conference on

Music Information Retrieval (ISMIR), pages 315–316, 2007. 3.1.2, 3.1.2

Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley, 2001. 2.2

Julie E Cumming. Motet & cantilena. In A Performers Guide to Medieval Music. Indiana

University Press, 2000. 4.3.2

Ryan Dahl, Mohammad Norouzi, and Jonathon Shlens. Pixel recursive super resolution.

In IEEE International Conference on Computer Vision (ICCV), pages 5449–5458, 2017.

5.3.7

Roger B. Dannenberg and Ning Hu. Polyphonic audio matching for score following and intel-

ligent audio editors. In Proceedings of the 2003 International Computer Music Conference

(ICMC). Michigan Publishing, 2003. 3.2.2

Mike E Davies and Christopher J James. Source separation using single channel ica. Signal

Processing, 87(8):1819–1832, 2007. 5.2, 5.2.1

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large clusters.

Communications of the ACM, 51(1):107–113, 2008. 5.1.4

Alexandre Défossez, Nicolas Usunier, Léon Bottou, and Francis R. Bach. Music source

separation in the waveform domain. arXiv Preprint arXiv:1911.13254, 2019. 5.2.1, 5.3.5

Johanna Devaney. Estimating onset and offset asynchronies in polyphonic score-audio align-

ment. Journal of New Music Research, 43(3):266–275, 2014. 3.1.2

183

Johanna Devaney and Daniel P. W. Ellis. Handling asynchrony in audio-score alignment.

In Proceedings of the 2009 International Computer Music Conference (ICMC). Michigan

Publishing, 2009. 3.1.2

Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, and Ilya

Sutskever. Jukebox: A generative model for music. arXiv Preprint arXiv:2005.00341,

2020. 2.3, 2.4, 4.2.2, 5, 5.1

Sander Dieleman and Benjamin Schrauwen. End-to-end learning for music audio. In IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages

6964–6968. IEEE, 2014. 3.3, 3.3.4

Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components

estimation. International Conference on Learning Representations Workshop, 2015. 2.6

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real NVP.

In 5th International Conference on Learning Representations (ICLR). OpenReview.net,

2017. 2.2, 2.6, 2.6, 5.1

Simon Dixon. An on-line time warping algorithm for tracking musical performances. In

Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence

(IJCAI), pages 1727–1728. Professional Book Center, 2005. 3.1

Chris Donahue, Julian J. McAuley, and Miller S. Puckette. Adversarial audio synthesis.

In 7th International Conference on Learning Representations (ICLR). OpenReview.net,

2019a. 2.5, 5.3.2

Chris Donahue, Ian Simon, and Sander Dieleman. Piano genie. In Proceedings of the 24th

International Conference on Intelligent User Interfaces (IUI), pages 160–164, 2019b. 1

Yilun Du and Igor Mordatch. Implicit generation and modeling with energy based models.

In Proceedings of the 32nd Advances in Neural Information Processing Systems (Neurips),

pages 3603–3613, 2019. 2.7, 5.1.1

184

Zhiyao Duan, Bryan Pardo, and Changshui Zhang. Multiple fundamental frequency esti-

mation by modeling spectral peaks and non-peak regions. IEEE/ACM Transactions on

Audio, Speech, and Language Processing, 18(8):2121–2133, 2010. 3.1.3

Alain Durmus and Eric Moulines. Nonasymptotic convergence analysis for the unadjusted

langevin algorithm. The Annals of Applied Probability, 27(3):1551–1587, 2017. 2.7

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros, and Noah A. Smith. Recurrent neu-

ral network grammars. In Proceedings of the 2016 Conference of the North American

Chapter of the Association for Computational Linguistics (NAACL), pages 199–209. The

Association for Computational Linguistics, 2016. 4.1.3

Kemal Ebcioğlu. An expert system for harmonizing four-part chorales. Computer Music

Journal, 12(3):43–51, 1988. 4.2.1

Douglas Eck and Jürgen Schmidhuber. Finding temporal structure in music: blues impro-

visation with LSTM recurrent networks. In Proceedings of the 12th IEEE Workshop on

Neural Networks for Signal Processing (NNSP), pages 747–756. IEEE, 2002. 4.2.1

Michael Elad. Sparse and Redundant Representations - From Theory to Applications in

Signal and Image Processing. Springer, 2010. 5.2

Daniel PW Ellis. Beat tracking by dynamic programming. Journal of New Music Research,

36(1):51–60, 2007. 6

Valentin Emiya, Roland Badeau, and Bertrand David. Multipitch estimation of piano sounds

using a new probabilistic spectral smoothness principle. IEEE/ACM Transactions on

Audio, Speech, and Language Processing, 18(6):1643–1654, 2010. 3.1.3, 3.2.1, 3.3, 4.2.2

Jesse H. Engel, Kumar Krishna Agrawal, Shuo Chen, Ishaan Gulrajani, Chris Donahue,

and Adam Roberts. Gansynth: Adversarial neural audio synthesis. In 7th International

Conference on Learning Representations (ICLR). OpenReview.net, 2019. 2.5

185

Hakan Erdogan and Emad M. Grais. Semi-blind speech-music separation using sparsity and

continuity priors. In 20th International Conference on Pattern Recognition (ICPR), pages

4573–4576. IEEE Computer Society, 2010. 5.2.1

Sefik Emre Eskimez, Kazuhito Koishida, and Zhiyao Duan. Adversarial training for speech

super-resolution. IEEE Journal of Selected Topics in Signal Processing, 13(2):347–358,

2019. 5.3.7

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution

image synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), pages 12873–12883, 2021. 4.2.2

Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John M. Winn, and Andrew

Zisserman. The pascal visual object classes (VOC) challenge. International Journal of

Computer Vision, 88(2):303–338, 2010. 3.3.6

Sebastian Ewert and Meinard Müller. Refinement strategies for music synchronization. In

Proceedings of the 5th International Symposium on Computer Music Modeling and Re-

trieval (CMMR), volume 5493, pages 147–165. Springer, 2008. 3.1.2, 3.1.2

Sebastian Ewert, Meinard Müller, and Peter Grosche. High resolution audio synchronization

using chroma onset features. In Proceedings of the IEEE International Conference on

Acoustics, Speech, and Signal Processing (ICASSP), pages 1869–1872. IEEE, 2009. 2,

3.1.1, 3.1.2, 3.1.2

Sebastian Ewert, Meinard Müller, Verena Konz, Daniel Müllensiefen, and Geraint A. Wig-

gins. Towards cross-version harmonic analysis of music. IEEE Transactions on Multimedia,

14(3-2):770–782, 2012. 3.1.3

Clément Farabet, Camille Couprie, Laurent Najman, and Yann LeCun. Learning hierar-

chical features for scene labeling. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 35(8):1915–1929, 2013. 3.1.1

186

Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient belief propagation for early

vision. International Journal of Computer Vision, 70(1):41–54, 2006. 5.1.2

Francesco Foscarin, Andrew McLeod, Philippe Rigaux, Florent Jacquemard, and Masahiko

Sakai. ASAP: a dataset of aligned scores and performances for piano transcription. In

Proceedings of the 21st International Society for Music Information Retrieval Conference

(ISMIR), pages 534–541, 2020. (document), 3.2.3, 3.4, 3.5

Maurice Frank and Maximilian Ilse. Problems using deep generative models for probabilistic

audio source separation. In “I Can’t Believe It’s Not Better!” Workshop at Advances in

Neural Information Processing Systems, 2020. 5.1

Judy A. Franklin. Multi-phase learning for jazz improvisation and interaction. Proceedings

of the Eighth Biennial Symposium for Arts and Technology, pages 51–60, 2001. 4.2.1

Christian Fremerey, Meinard Müller, and Michael Clausen. Handling repeats and jumps in

score-performance synchronization. In Proceedings of the 11th International Society for

Music Information Retrieval Conference (ISMIR), pages 243–248. International Society

for Music Information Retrieval, 2010. 3.2.4

Maria Funaro, Erkki Oja, and Harri Valpola. Independent component analysis for artefact

separation in astrophysical images. Neural Networks, 16(3-4):469–478, 2003. 6

Yossi Gandelsman, Assaf Shocher, and Michal Irani. ”double-dip”: Unsupervised image

decomposition via coupled deep-image-priors. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), pages 11026–11035, 2019. 5.2.1

Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. Texture synthesis using con-

volutional neural networks. In Proceedings of the 28th Advances in Neural Information

Processing Systems (Neurips), pages 262–270, 2015. 5.2.3

187

Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. Image style transfer using con-

volutional neural networks. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), pages 2414–2423, 2016. 5.2.3

Stuart Geman and Donald Geman. Stochastic relaxation, gibbs distributions, and the

bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 6(6):721–741, 1984. 5.2.1

Robert Gens and Pedro M. Domingos. Deep symmetry networks. In Proceedings of the 27th

Advances in Neural Information Processing Systems (Neurips), pages 2537–2545, 2014.

3.3.5

Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. MADE: masked autoen-

coder for distribution estimation. In 32nd International Conference on Machine Learning

(ICML), volume 37 of Proceedings of Machine Learning Research, pages 881–889, 2015.

2.3, 4.2.4

Zoubin Ghahramani and Michael I. Jordan. Factorial hidden markov models. In Proceedings

of the 8th Advances in Neural Information Processing Systems (Neurips), pages 472–478,

1995. 4.2.4

John R. Gilbert, Cleve Moler, and Robert Schreiber. Sparse matrices in MATLAB: design

and implementation. SIAM Journal on Matrix Analysis and Applications, 13(1):333–356,

1992. 4.2.3

Michael Good. Musicxml for notation and analysis. In The Virtual Score: Representation,

Retrieval, Restoration. MIT Press, 2001. 4.1.3

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil

Ozair, Aaron C. Courville, and Yoshua Bengio. Generative adversarial nets. In Proceedings

of the 27th Advances in Neural Information Processing Systems (Neurips), pages 2672–

2680, 2014. 2.2, 2.5

188

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing ad-

versarial examples. In 3rd International Conference on Learning Representations (ICLR).

OpenReview.net, 2015. 5.2.3

Masataka Goto, Hiroki Hashiguchi, Takuichi Nishimura, and Ryuichi Oka. RWC music

database: Music genre database and musical instrument sound database. In Proceedings

of the 4th International Society for Music Information Retrieval Conference (ISMIR),

2003. 3.2.1, 3.3

Ulf Grenander. Tutorial in pattern theory. Report, Division of Applied Mathematics, 1983.

2.7

Ulf Grenander and Michael I Miller. Representations of knowledge in complex systems.

Journal of the Royal Statistical Society: Series B (Methodological), 56(4):549–581, 1994.

2.7

Gaëtan Hadjeres, François Pachet, and Frank Nielsen. Deepbach: a steerable model for

bach chorales generation. In 34th International Conference on Machine Learning (ICML),

volume 70 of Proceedings of Machine Learning Research, pages 1362–1371, 2017. 4.2.1,

4.2.4, 4.2.4, 4.2.5, 5.1.1

Tavi Halperin, Ariel Ephrat, and Yedid Hoshen. Neural separation of observed and un-

observed distributions. In 36th International Conference on Machine Learning (ICML),

volume 97 of Proceedings of Machine Learning Research, pages 2566–2575, 2019. (docu-

ment), 5.2.1, 5.2.2, 5.3.5, 5.2, 5.3

Paul Hand and Vladislav Voroninski. Global guarantees for enforcing deep generative priors

by empirical risk. IEEE Transactions on Information Theory, 66(1):401–418, 2020. 2.2

Tatsunori B. Hashimoto, Hugh Zhang, and Percy Liang. Unifying human and statistical

evaluation for natural language generation. In Proceedings of the 2019 Conference of

189

the North American Chapter of the Association for Computational Linguistics (NAACL),

pages 1689–1701. Association for Computational Linguistics, 2019. 4.2.5

Curtis Hawthorne, Andriy Stasyuk, Adam Roberts, Ian Simon, Cheng-Zhi Anna Huang,

Sander Dieleman, Erich Elsen, Jesse H. Engel, and Douglas Eck. Enabling factorized

piano music modeling and generation with the MAESTRO dataset. In 7th International

Conference on Learning Representations (ICLR). OpenReview.net, 2019. 3.1.3, 3.1.4,

3.2.1, 3.3, 3.3.1, 4.2.2

Simon Haykin and Zhe Chen. The cocktail party problem. Neural Computation, 17(9):

1875–1902, 2005. 1

W Heisenberg. Über den anschaulichen inhalt der quantentheoretischen kinematik und

mechanik. Zeitschrift fur Physik, 43(3-4):172–198, 1927. 3.3.3

William Herlands, Ricky Der, Yoel Greenberg, and Simon A. Levin. A machine learning

approach to musically meaningful homogeneous style classification. In Proceedings of the

Twenty-Eighth AAAI Conference on Artificial Intelligence, pages 276–282. AAAI Press,

2014. 4.3, 4.3.1, 4.3.5

Dorien Herremans, David Martens, and Kenneth Sörensen. Composer classification models

for music-theory building. In Computational Music Analysis, pages 369–392. Springer,

2016. (document), 4.3.1, 4.3.4, 4.3.5, 4.3.5, 4.10

Dorien Herremans, Ching-Hua Chuan, and Elaine Chew. A functional taxonomy of music

generation systems. ACM Computing Surveys, 50(5):69:1–69:30, 2017. 1, 4.2

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochre-

iter. Gans trained by a two time-scale update rule converge to a local nash equilibrium.

In Proceedings of the 30th Advances in Neural Information Processing Systems (Neurips),

pages 6626–6637, 2017. 4.2.5, 5.2.2

190

Ruben Hillewaere, Bernard Manderick, and Darrell Conklin. Global feature versus event

models for folk song classification. In Proceedings of the 10th International Society for

Music Information Retrieval Conference (ISMIR), pages 729–734. International Society

for Music Information Retrieval, 2009. 4.3.1

Ruben Hillewaere, Bernard Manderick, and Darrell Conklin. String quartet classification

with monophonic models. In Proceedings of the 11th International Society for Music

Information Retrieval Conference (ISMIR), pages 537–542. International Society for Music

Information Retrieval, 2010. 4.3, 4.3.1, 4.3.4, 4.3.5

Geoffrey Hinton, Simon Osindero, Max Welling, and Yee-Whye Teh. Unsupervised discovery

of nonlinear structure using contrastive backpropagation. Cognitive science, 2006. 2.7

Geoffrey E Hinton. Training products of experts by minimizing contrastive divergence. Neural

computation, 2002. 2.2, 2.7, 2.7

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural

text degeneration. In 8th International Conference on Learning Representations (ICLR).

OpenReview.net, 2020. 5.2, 5.3.3

Maŕıa Hontanilla, Carlos Pérez-Sancho, and José Manuel Iñesta Quereda. Modeling musical

style with language models for composer recognition. In Proceedings of the 6th Iberian

Conference on Pattern Recognition and Image Analysis, volume 7887 of Lecture Notes in

Computer Science, pages 740–748. Springer, 2013. 4.3.1, 4.3.4

Ning Hu, Roger B Dannenberg, and George Tzanetakis. Polyphonic audio matching and

alignment for music retrieval. In IEEE Workshop on Applications of Signal Processing to

Audio and Acoustics, pages 185–188, 2003. 3.1.3, 2

Cheng-Zhi Anna Huang, David Duvenaud, and Krzysztof Z. Gajos. Chordripple: Recom-

mending chords to help novice composers go beyond the ordinary. In Proceedings of the

191

21st International Conference on Intelligent User Interfaces (IUI), pages 241–250. ACM,

2016. 6

Cheng-Zhi Anna Huang, Tim Cooijmans, Adam Roberts, Aaron C. Courville, and Douglas

Eck. Counterpoint by convolution. In Proceedings of the 18th International Society for

Music Information Retrieval Conference (ISMIR), pages 211–218, 2017. 4.2.1, 4.2.5

Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Ian Simon, Curtis Hawthorne,

Noam Shazeer, Andrew M. Dai, Matthew D. Hoffman, Monica Dinculescu, and Douglas

Eck. Music transformer: Generating music with long-term structure. In 7th International

Conference on Learning Representations (ICLR). OpenReview.net, 2019. 2.3, 4.2, 4.2.3,

4.2.4

Po-Sen Huang, Minje Kim, Mark Hasegawa-Johnson, and Paris Smaragdis. Singing-voice

separation from monaural recordings using deep recurrent neural networks. In Proceedings

of the 15th International Society for Music Information Retrieval Conference (ISMIR),

pages 477–482, 2014. 5.2.1

Po-Sen Huang, Minje Kim, Mark Hasegawa-Johnson, and Paris Smaragdis. Joint opti-

mization of masks and deep recurrent neural networks for monaural source separation.

IEEE/ACM Transactions on Audio, Speech, and Language Processing, 23(12):2136–2147,

2015. 5.2.1

Eric J. Humphrey, Juan Pablo Bello, and Yann LeCun. Moving beyond feature design: Deep

architectures and automatic feature learning in music informatics. In Proceedings of the

13th International Society for Music Information Retrieval Conference (ISMIR), pages

403–408, 2012. 3.2

Yun-Ning Hung, Yi-An Chen, and Yi-Hsuan Yang. Multitask learning for frame-level in-

strument recognition. In IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pages 381–385. IEEE, 2019. 3.3.1

192

David Huron. The humdrum toolkit: Software for music research. 1993. 4.1.2

Aapo Hyvärinen. Estimation of non-normalized statistical models by score matching. Journal

of Machine Learning Research (JMLR), 6:695–709, 2005. 2.7

International MIDI Association. Midi musical instrument digital interface specification 1.0.

1983. 2.1, 4.1.1

International MIDI Association. Standard midi files. 1988. 4.1.1

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. Image-to-image translation

with conditional adversarial networks. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), pages 5967–5976, 2017. 3.1.1

Özgür Izmirli and Roger B. Dannenberg. Understanding features and distance functions

for music sequence alignment. In Proceedings of the 11th International Society for Music

Information Retrieval Conference (ISMIR), pages 411–416, 2010. 3.2.2

Andreas Jansson, Eric J. Humphrey, Nicola Montecchio, Rachel M. Bittner, Aparna Kumar,

and Tillman Weyde. Singing voice separation with deep u-net convolutional networks. In

Proceedings of the 18th International Society for Music Information Retrieval Conference

(ISMIR), pages 745–751, 2017. 5.2.1

Natasha Jaques, Shixiang Gu, Richard E. Turner, and Douglas Eck. Tuning recurrent neu-

ral networks with reinforcement learning. In 5th International Conference on Learning

Representations (ICLR) Workshop Track Proceedings. OpenReview.net, 2017. 4.2.1

Vivek Jayaram and John Thickstun. Source separation with deep generative priors. In

37th International Conference on Machine Learning (ICML), volume 119 of Proceedings

of Machine Learning Research, pages 4724–4735, 2020. 5, 5.1.5, 5.2

Vivek Jayaram and John Thickstun. Parallel and flexible sampling from autoregressive

models via langevin dynamics. In 38th International Conference on Machine Learning

193

(ICML), volume 139 of Proceedings of Machine Learning Research, pages 4807–4818, 2021.

5.1.5

Dasaem Jeong, Taegyun Kwon, Yoojin Kim, Kyogu Lee, and Juhan Nam. Virtuosonet: A

hierarchical rnn-based system for modeling expressive piano performance. In Proceedings

of the 20th International Society for Music Information Retrieval Conference (ISMIR),

pages 908–915, 2019a. 4.1.3

Dasaem Jeong, Taegyun Kwon, Yoojin Kim, and Juhan Nam. Graph neural network for

music score data and modeling expressive piano performance. In 36th International Con-

ference on Machine Learning (ICML), volume 97 of Proceedings of Machine Learning

Research, pages 3060–3070, 2019b. 4.1.3

Cyril Joder and Björn W. Schuller. Off-line refinement of audio-to-score alignment by obser-

vation template adaptation. In IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pages 206–210. IEEE, 2013. 3.1.2, 3.1.3

Cyril Joder, Slim Essid, and Gaël Richard. An improved hierarchical approach for music-

to-symbolic score alignment. In Proceedings of the 11th International Society for Music

Information Retrieval Conference (ISMIR), pages 39–45, 2010. 3.1.3

Cyril Joder, Slim Essid, and Gaël Richard. A conditional random field framework for robust

and scalable audio-to-score matching. IEEE/ACM Transactions on Audio, Speech, and

Language Processing, 19(8):2385–2397, 2011. 3.1.2, 3.1.3

Cyril Joder, Slim Essid, and Gaël Richard. Learning optimal features for polyphonic audio-

to-score alignment. IEEE/ACM Transactions on Audio, Speech, and Language Processing,

21(10):2118–2128, 2013. 3.1.2, 3.1.3, 3.2.2

Daniel D. Johnson. Generating polyphonic music using tied parallel networks. In Proceedings

of the 6th International Conference on Computational Intelligence in Music, Sound, Art

194

and Design, Lecture Notes in Computer Science, pages 128–143, 2017. 4.2.1, 4.2.3, 4.2.4,

4.2.4

Anna Jordanous. A standardised procedure for evaluating creative systems: Computational

creativity evaluation based on what it is to be creative. Cognitive Computation, 4(3):

246–279, 2012. 4.2.5

Frederick P. Brooks Jr., Albert L. Hopkins Jr., Peter G. Neumann, and William V. Wright.

An experiment in musical composition. IRE Transactions on Electronic Computers, 6(3):

175–182, 1957. 4.2.1

Dan Jurafsky and James H. Martin. Speech and language processing: an introduction to nat-

ural language processing, computational linguistics, and speech recognition, 2nd Edition.

Prentice Hall series in artificial intelligence. Prentice Hall, Pearson Education Interna-

tional, 2009. 4.1.4

Maximos A. Kaliakatsos-Papakostas, Michael G. Epitropakis, and Michael N. Vrahatis. Mu-

sical composer identification through probabilistic and feedforward neural networks. In

European Conference on the Applications of Evolutionary Computation, pages 411–420.

Springer, 2010. 4.3.1

Maximos A Kaliakatsos-Papakostas, Michael G Epitropakis, and Michael N Vrahatis.

Weighted markov chain model for musical composer identification. In European Con-

ference on the Applications of Evolutionary Computation, volume 6625 of Lecture Notes

in Computer Science, pages 334–343. Springer, 2011. 4.3.1

Maximos A. Kaliakatsos-Papakostas, Andreas Floros, and Michael N. Vrahatis. Intelligent

real-time music accompaniment for constraint-free improvisation. In IEEE 24th Inter-

national Conference on Tools with Artificial Intelligence (ICTAI), pages 444–451, 2012.

6

195

T Anderson Keller, Jorn WT Peters, Priyank Jaini, Emiel Hoogeboom, Patrick Forré, and

Max Welling. Self normalizing flows. Beyond Backpropagation Workshop at Neural Infor-

mation Processing Systems, 2020. 2.6

Rainer Kelz, Matthias Dorfer, Filip Korzeniowski, Sebastian Böck, Andreas Arzt, and Ger-

hard Widmer. On the potential of simple framewise approaches to piano transcription. In

Proceedings of the 17th International Society for Music Information Retrieval Conference

(ISMIR), pages 475–481, 2016. 3.3.1

Katherine C Kempfert and Samuel WK Wong. Where does haydn end and mozart begin?

composer classification of string quartets. Journal of New Music Research, 49(5):457–476,

2020. 4.3, 4.3.1, 4.3.4, 4.3.4, 4.3.5

Joseph Keshet, Shai Shalev-Shwartz, Yoram Singer, and Dan Chazan. A large margin algo-

rithm for speech-to-phoneme and music-to-score alignment. IEEE/ACM Transactions on

Audio, Speech, and Language Processing, 15(8):2373–2382, 2007. 3.1.2, 3.1.3

Chloé Kiddon and Pedro M. Domingos. Coarse-to-fine inference and learning for first-order

probabilistic models. In Proceedings of the Twenty-Fifth AAAI Conference on Artificial

Intelligence (AAAI). AAAI Press, 2011. 5.1.2

Jong Wook Kim. Automatic Music Transcription in the Deep Learning Era: Perspectives on

Generative Neural Networks. PhD thesis, New York University, 2020. 1

Sungwon Kim, Sang-gil Lee, Jongyoon Song, Jaehyeon Kim, and Sungroh Yoon. Flowavenet

: A generative flow for raw audio. In 36th International Conference on Machine Learning

(ICML), volume 97 of Proceedings of Machine Learning Research, pages 3370–3378, 2019.

2.6, 5.3.2

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd

International Conference on Learning Representations, (ICLR). OpenReview.net, 2015.

4.3.3

196

Diederik P. Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 con-

volutions. In Proceedings of the 31st Advances in Neural Information Processing Systems

(Neurips), pages 10236–10245, 2018. 2.6, 2.6, 5.1, 5.1.1, 5.3.2

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In 2nd International

Conference on Learning Representations, (ICLR). OpenReview.net, 2014. 2.2, 2.4, 2.4, 5.1

Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vecchi. Optimization by simulated anneal-

ing. Science, 220(4598):671–680, 1983. 2.7, 5.1, 5.1.1, 5.1.2

Bartek T Knapik, Aad W Van Der Vaart, J Harry van Zanten, et al. Bayesian inverse

problems with gaussian priors. The Annals of Statistics, 39(5):2626–2657, 2011. 5.2

Teuvo Kohonen. A self-learning musical grammar, or ‘associative memory of the second

kind’. International Joint Conference on Neural Networks, pages 1–5, 1989. 4.2.1

Teuvo Kohonen. The self-organizing map. Proceedings of the IEEE, 78(9):1464–1480, 1990.

3.3.5

Qiuqiang Kong, Yong Xu, Philip J. B. Jackson, Wenwu Wang, and Mark D. Plumbley. Single-

channel signal separation and deconvolution with generative adversarial networks. In

Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI),

pages 2747–2753. ijcai.org, 2019. (document), 5.2.1, 5.2.2, 5.3.5, 5.2

Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A

versatile diffusion model for audio synthesis. In 9th International Conference on Learning

Representations (ICLR). OpenReview.net, 2021. 2.7, 5.3.2

Rainer Kress. Numerical analysis. Springer, 1998. 3.1.2

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009. 4.2.5, 5.3.1

197

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep

convolutional neural networks. In Proceedings of the 25th Advances in Neural Information

Processing Systems (Neurips), pages 1106–1114, 2012. 3.3.1, 4.2.5

Taku Kudo and John Richardson. Sentencepiece: A simple and language independent sub-

word tokenizer and detokenizer for neural text processing. In Proceedings of the 2018

Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 66–

71. Association for Computational Linguistics, 2018. 4.1.4

Volodymyr Kuleshov, S Zayd Enam, and Stefano Ermon. Audio super-resolution using neural

nets. In International Conference on Learning Representations (Workshop Track), 2017.

(document), 5.3.7, 5.6

Kundan Kumar, Rithesh Kumar, Thibault de Boissiere, Lucas Gestin, Wei Zhen Teoh,

Jose Sotelo, Alexandre de Brébisson, Yoshua Bengio, and Aaron C. Courville. Melgan:

Generative adversarial networks for conditional waveform synthesis. In Proceedings of the

32nd Advances in Neural Information Processing Systems (Neurips), pages 14881–14892,

2019. 2.5, 5.3.2

Taegyun Kwon, Dasaem Jeong, and Juhan Nam. Audio-to-score alignment of piano music

using rnn-based automatic music transcription. In 14th Sound and Music Computing

Conference, (SMC), Espoo, Finland, 5-8 July 2017, 2017. 3.1.2, 3.1.3

Rémi Lajugie, Damien Garreau, Francis R. Bach, and Sylvain Arlot. Metric learning for

temporal sequence alignment. In Proceedings of the 27th Advances in Neural Information

Processing Systems (Neurips), pages 1817–1825, 2014. 3.2.2

Rémi Lajugie, Piotr Bojanowski, Philippe Cuvillier, Sylvain Arlot, and Francis R. Bach. A

weakly-supervised discriminative model for audio-to-score alignment. In IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 2484–2488.

IEEE, 2016. 3.1.2, 3.1.3, 3.2.2

198

Hugo Larochelle and Iain Murray. The neural autoregressive distribution estimator. In 14th

International Conference on Artificial Intelligence and Statistics (AISTATS), volume 15

of Proceedings of Machine Learning Research, pages 29–37, 2011. 2.2, 2.3, 2.3, 4.1.1, 5.1

Victor Lavrenko and Jeremy Pickens. Polyphonic music modeling with random fields. In

Proceedings of the Eleventh ACM International Conference on Multimedia (ACMMM),

pages 120–129. ACM, 2003. 4.2.1, 4

Yann LeCun, Bernhard E. Boser, John S. Denker, Donnie Henderson, Richard E. Howard,

Wayne E. Hubbard, and Lawrence D. Jackel. Backpropagation applied to handwritten zip

code recognition. Neural Computation, 1(4):541–551, 1989. 2.3

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning

applied to document recognition. Proceedings of the IEEE, pages 2278–2324, 1998. 3.3.5,

5.3.1

Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, and F Huang. A tutorial on energy-

based learning. Predicting Structured Data, 2006. 2.2

Daniel D Lee and H Sebastian Seung. Learning the parts of objects by non-negative matrix

factorization. Nature, 401(6755):788, 1999. 5.2.1

Daniel D. Lee and H. Sebastian Seung. Algorithms for non-negative matrix factorization.

In Proceedings of the 13th Advances in Neural Information Processing Systems (Neurips),

pages 556–562, 2000. 5.2.1

Te-Won Lee, Michael S Lewicki, Mark Girolami, and Terrence J Sejnowski. Blind source

separation of more sources than mixtures using overcomplete representations. IEEE Signal

Processing Letters, 6(4):87–90, 1999. 5.2.1

Anat Levin, Dani Lischinski, and Yair Weiss. Colorization using optimization. ACM Trans-

actions on Graphics, 23(3):689–694, 2004. 5.3.6

199

Bochen Li, Xinzhao Liu, Karthik Dinesh, Zhiyao Duan, and Gaurav Sharma. Creating a

multitrack classical music performance dataset for multimodal music analysis: Challenges,

insights, and applications. IEEE Transactions on Multimedia, 21(2):522–535, 2019. 3.3.6

Yuanqing Li, Shun-Ichi Amari, Andrzej Cichocki, Daniel WC Ho, and Shengli Xie. Under-

determined blind source separation based on sparse representation. IEEE Transactions on

Signal Processing, 54(2):423–437, 2006. 5.2.1

Feynman T. Liang, Mark Gotham, Matthew Johnson, and Jamie Shotton. Automatic stylis-

tic composition of bach chorales with deep LSTM. In Proceedings of the 18th International

Society for Music Information Retrieval Conference (ISMIR), pages 449–456, 2017. (doc-

ument), 2.3, 4.4, 4.2.1, 4.2.4

Rosanne Liu, Joel Lehman, Piero Molino, Felipe Petroski Such, Eric Frank, Alex Sergeev, and

Jason Yosinski. An intriguing failing of convolutional neural networks and the coordconv

solution. In Proceedings of the 31st Advances in Neural Information Processing Systems

(Neurips), pages 9628–9639, 2018. 4.1.5

Francesc Llúıs, Jordi Pons, and Xavier Serra. End-to-end music source separation: Is it

possible in the waveform domain? In 20th Annual Conference of the International Speech

Communication Association (Interspeech), pages 4619–4623. ISCA, 2019. 5.2.1

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for se-

mantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR), pages 3431–3440, 2015. 3.1.1

Michael Luby and Charles Rackoff. How to construct pseudorandom permutations from

pseudorandom functions. SIAM Journal on Computing, 17(2):373–386, 1988. 2.6

Hans-Dieter Lüke. The origins of the sampling theorem. IEEE Communications Magazine,

37(4):106–108, 1999. 2.1

200

Yi Luo and Nima Mesgarani. Conv-tasnet: Surpassing ideal time-frequency magnitude

masking for speech separation. IEEE/ACM Transactions on Audio, Speech, and Language

Processing, 27(8):1256–1266, 2019. 5.3.5

Siwei Lyu. Interpretation and generalization of score matching. In Proceedings of the 25th

Conference on Uncertainty in Artificial Intelligence (UAI), pages 359–366, 2009. 2.7

Fangchang Ma, Ulas Ayaz, and Sertac Karaman. Invertibility of convolutional generative

networks from partial measurements. In Proceedings of the 31st Advances in Neural In-

formation Processing Systems (Neurips), pages 9651–9660, 2018. 2.2

Saunders Mac Lane. Categories for the Working Mathematician. Springer, 1971. 3.1.2

Upamanyu Madhow. Blind adaptive interference suppression for the near-far resistant acqui-

sition and demodulation of direct-sequence CDMA signals. IEEE Transactions on Signal

Processing, 45(1):124–136, 1997. 6

Akira Maezawa and Hiroshi G. Okuno. Bayesian audio-to-score alignment based on joint

inference of timbre, volume, tempo, and note onset timings. Computer Music Journal, 39

(1):74–87, 2015. 3.1.3

Julien Mairal, Francis R. Bach, and Jean Ponce. Sparse modeling for image and vision

processing. Foundations and Trends in Computer Graphics and Vision, 8(2-3):85–283,

2014. 5.2

Matija Marolt. A connectionist approach to automatic transcription of polyphonic piano

music. IEEE Transactions on Multimedia, 6(3):439–449, 2004. 3.2, 3.3.6

Brian McFee, Eric J. Humphrey, and Juan Pablo Bello. A software framework for musical

data augmentation. In Proceedings of the 16th International Society for Music Information

Retrieval Conference (ISMIR), pages 248–254, 2015a. 3.3.1

201

Brian McFee, Colin Raffel, Dawen Liang, Daniel PW Ellis, Matt McVicar, Eric Battenberg,

and Oriol Nieto. librosa: Audio and music signal analysis in python. In Proceedings of the

14th Python in Science Conference, volume 8, pages 18–25, 2015b. 3.2.3

Soroush Mehri, Kundan Kumar, Ishaan Gulrajani, Rithesh Kumar, Shubham Jain, Jose

Sotelo, Aaron C. Courville, and Yoshua Bengio. Samplernn: An unconditional end-to-end

neural audio generation model. In 5th International Conference on Learning Representa-

tions (ICLR). OpenReview.net, 2017. 2.3, 5

Yoram Meron and Keikichi Hirose. Automatic alignment of a musical score to performed

music. Acoustical Science and Technology, 22(3):189–198, 2001. 3.1.2, 3.1.3

Marvin Minsky and Seymour Papert. Perceptrons - an Introduction to Computational Ge-

ometry. MIT Press, 1987. 4.3.4

Marius Miron, Julio José Carabias-Orti, and Jordi Janer. Audio-to-score alignment at the

note level for orchestral recordings. In Proceedings of the 15th International Society for

Music Information Retrieval Conference (ISMIR), pages 125–130, 2014. 3.1.3

Shinjiro Mita, Gaku Hatanaka, Alexis Meneses, Nattapong Thammasan, and Daiki Miura.

Mirex 2017 : Multi-instrumental end-to-end convolutional neural network for multiple f0

estimation. MIREX Multiple Fundamental Frequency Estimation & Tracking Task, 2017.

3.2, 3.3.6

Shakir Mohamed and Balaji Lakshminarayanan. Learning in implicit generative models.

arXiv Preprint arXiv:1610.03483, 2016. 2.5

Michael C. Mozer. Neural network music composition by prediction: Exploring the benefits

of psychoacoustic constraints and multi-scale processing. Connection Science, 6(2-3):247–

280, 1994. 4.2.1

Meinard Müller. Dynamic time warping. In Information Retrieval for Music and Motion.

Springer, 2007. 3.2.2

202

Eita Nakamura, Kazuyoshi Yoshii, and Haruhiro Katayose. Performance error detection and

post-processing for fast and accurate symbolic music alignment. In Proceedings of the

18th International Society for Music Information Retrieval Conference (ISMIR), pages

347–353, 2017. 3, 3.1.1, 1, 3.1.4

Juhan Nam, Jiquan Ngiam, Honglak Lee, and Malcolm Slaney. A classification-based poly-

phonic piano transcription approach using learned feature representations. In Proceedings

of the 12th International Society for Music Information Retrieval Conference (ISMIR),

pages 175–180, 2011. 3.3.1

Radford M Neal et al. MCMC using hamiltonian dynamics. In Handbook of Markov Chain

Monte Carlo. Chapman & Hall, 2011. 5, 5.1.1

Anh Mai Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily fooled:

High confidence predictions for unrecognizable images. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), pages 427–436, 2015.

5.2.3

XuanLong Nguyen, Martin J. Wainwright, and Michael I. Jordan. Estimating divergence

functionals and the likelihood ratio by convex risk minimization. IEEE Transactions on

Information Theory, 56(11):5847–5861, 2010. 2.5

Bernhard Niedermayer. Improving accuracy of polyphonic music-to-score alignment. In

Proceedings of the 10th International Society for Music Information Retrieval Conference

(ISMIR), pages 585–590, 2009. 3.1.2, 3.1.3

Bernhard Niedermayer and Gerhard Widmer. A multi-pass algorithm for accurate audio-to-

score alignment. In Proceedings of the 11th International Society for Music Information

Retrieval Conference (ISMIR), pages 417–422, 2010. 3.1.2, 3.1.3

Shigeto Nishida, Masatoshi Nakamura, Akio Ikeda, and Hiroshi Shibasaki. Signal separation

203

of background eeg and spike by using morphological filter. Medical Engineering & Physics,

21(9):601–608, 1999. 5.2.1

Feng Niu, Benjamin Recht, Christopher Ré, and Stephen J. Wright. Hogwild: A lock-free

approach to parallelizing stochastic gradient descent. In Proceedings of the 24th Advances

in Neural Information Processing Systems (Neurips), pages 693–701, 2011. 5.1.4

Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative neural

samplers using variational divergence minimization. In Proceedings of the 29th Advances

in Neural Information Processing Systems (Neurips), pages 271–279, 2016. 2.5

Aditya Arie Nugraha, Antoine Liutkus, and Emmanuel Vincent. Multichannel audio source

separation with deep neural networks. IEEE/ACM Transactions on Audio, Speech, and

Language Processing, 24(9):1652–1664, 2016. 5.2.1

Harry Nyquist. Certain topics in telegraph transmission theory. Transactions of the American

Institute of Electrical Engineers, 1928. 4.2

Sageev Oore, Ian Simon, Sander Dieleman, Douglas Eck, and Karen Simonyan. This time

with feeling: learning expressive musical performance. Neural Computing and Applications,

32(4):955–967, 2020. 4.2, 4.2.3, 4.2.4

Nicola Orio and Diemo Schwarz. Alignment of monophonic and polyphonic music to a score.

In Proceedings of the 2001 International Computer Music Conference (ICMC). Michigan

Publishing, 2001. 1, 3.1.2, 3.1.3, 3.2.2, 3.2.2

Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer, Alexander

Ku, and Dustin Tran. Image transformer. In 35th International Conference on Machine

Learning (ICML), volume 80 of Proceedings of Machine Learning Research, pages 4052–

4061, 2018. 4.1.5, 4.2.3, 5.1, 5.1, 5.3.5

204

Deepak Pathak, Philipp Krähenbühl, Jeff Donahue, Trevor Darrell, and Alexei A. Efros.

Context encoders: Feature learning by inpainting. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition (CVPR), pages 2536–2544, 2016.

5.3.8

Grigorios A Pavliotis. Stochastic Processes and Applications: Diffusion Processes, the

Fokker-Planck and Langevin Equations. Springer, 2014. 2.7

Marcus Pearce and Geraint Wiggins. Towards a framework for the evaluation of machine

compositions. In Proceedings of the AISB 2001 Symposium on Artificial Intelligence and

Creativity in the Arts and Sciences, pages 22–32, 2001. 4.2.5

Marcus T Pearce and Geraint A Wiggins. Evaluating cognitive models of musical composi-

tion. In Proceedings of the 4th International Joint Workshop on Computational Creativity,

pages 73–80. Goldsmiths, University of London, 2007. 4.2.5

Barak A. Pearlmutter and Lucas C. Parra. Maximum likelihood blind source separation:

A context-sensitive generalization of ICA. In Proceedings of the 9th Advances in Neural

Information Processing Systems 9 (Neurips), pages 613–619, 1996. 5.2.1

Fabrizio Pedersoli, George Tzanetakis, and Kwang Moo Yi. Improving music transcription

by pre-stacking A u-net. In IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pages 506–510. IEEE, 2020. 3.3.1

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,

Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake

VanderPlas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot,

and Edouard Duchesnay. Scikit-learn: Machine learning in python. volume 12, pages

2825–2830, 2011. (document), 3.6

Gabriel Peyré and Marco Cuturi. Computational optimal transport. Foundations and Trends

in Machine Learning, 11(5-6):355–607, 2019. 2.5

205

Wei Ping, Kainan Peng, and Jitong Chen. Clarinet: Parallel wave generation in end-to-

end text-to-speech. In 7th International Conference on Learning Representations (ICLR).

OpenReview.net, 2019. 5.1.1

Wei Ping, Kainan Peng, Kexin Zhao, and Zhao Song. Waveflow: A compact flow-based

model for raw audio. In 37th International Conference on Machine Learning (ICML),

volume 119 of Proceedings of Machine Learning Research, pages 7706–7716, 2020. 2.6,

5.3.2

Richard C Pinkerton. Information theory and melody. Scientific American, 1956. 4.2.1

Mark D. Plumbley, Samer A. Abdallah, Juan Pablo Bello, Mike E. Davies, Giuliano Monti,

and Mark B. Sandler. Automatic music transcription and audio source separation. Cyber-

netics & Systems, 33(6):603–627, 2002. 1

Graham E. Poliner and Daniel P. W. Ellis. A discriminative model for polyphonic piano

transcription. EURASIP Journal on Applied Signal Processing, 2007. 3.2.1, 3.3.1, 3.3.6

Emanuele Pollastri and Giuliano Simoncelli. Classification of melodies by composer with

hidden markov models. In First International Conference on WEB Delivering of Music

(WEDELMUSIC, pages 88–95. IEEE Computer Society, 2001. 4.3.1

Jordi Pons and Xavier Serra. Designing efficient architectures for modeling temporal fea-

tures with convolutional neural networks. In IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pages 2472–2476. IEEE, 2017. 3.3.1

Ryan Prenger, Rafael Valle, and Bryan Catanzaro. Waveglow: A flow-based generative

network for speech synthesis. In IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pages 3617–3621. IEEE, 2019. 2.6, 5.3.2

Lawrence R. Rabiner and Ronald W. Schafer. Introduction to digital speech processing.

Foundations and Trends in Signal Processing, 1(1/2):1–194, 2007. 3.3.3, 3.3.3

206

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.

Language models are unsupervised multitask learners. OpenAI blog, 2019. 4.2.2, 4.2.5, 5.1

Colin Raffel. Learning-Based Methods for Comparing Sequences, with Applications to Audio-

to-MIDI Alignment and Matching. PhD thesis, Columbia University, 2016. 3.2.1, 3.3

Colin Raffel and Daniel P. W. Ellis. Optimizing dtw-based audio-to-midi alignment and

matching. In IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 81–85. IEEE, 2016. 3.1.3, 3.1.4, 3, 3.2.3, 3.2.3

Colin Raffel and Daniel PW Ellis. Intuitive analysis, creation and manipulation of midi data

with pretty midi. In 15th International Society for Music Information Retrieval Conference

Late Breaking and Demo Papers, pages 84–93, 2014. 3.2.3

Colin Raffel, Brian McFee, Eric J. Humphrey, Justin Salamon, Oriol Nieto, Dawen Liang, and

Daniel P. W. Ellis. mir eval: A transparent implementation of common MIR metrics. In

Proceedings of the 15th International Society for Music Information Retrieval Conference

(ISMIR), pages 367–372, 2014. (document), 3.6

Zafar Rafii, Antoine Liutkus, Fabian-Robert Stöter, Stylianos Ioannis Mimilakis, and Rachel

Bittner. The MUSDB18 corpus for music separation, 2017. URL https://doi.org/10.

5281/zenodo.1117372. 5.3.5

Ankit Raj, Yuqi Li, and Yoram Bresler. Gan-based projector for faster recovery with con-

vergence guarantees in linear inverse problems. In IEEE/CVF International Conference

on Computer Vision (ICCV), pages 5601–5610. IEEE, 2019. 5.2

Marc’Aurelio Ranzato, Y-Lan Boureau, Sumit Chopra, and Yann LeCun. A unified energy-

based framework for unsupervised learning. In 11th International Conference on Artificial

Intelligence and Statistics (AISTATS), volume 2 of Proceedings of Machine Learning Re-

search, pages 371–379, 2007. 2.7

https://doi.org/10.5281/zenodo.1117372
https://doi.org/10.5281/zenodo.1117372

207

Christopher Raphael. Automatic segmentation of acoustic musical signals using hidden

markov models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(4):

360–370, 1999. 3.2.2

Christopher Raphael. Coarse-to-fine dynamic programming. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 23(12):1379–1390, 2001. 5.1.2

Christopher Raphael. A hybrid graphical model for aligning polyphonic audio with musical

scores. In Proceedings of the 5th International Society for Music Information Retrieval

Conference (ISMIR), pages 387–394, 2004. 3.1.2

Ali Razavi, Aaron van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images

with vq-vae-2. In Advances in Neural Information Processing Systems, pages 14866–14876,

2019. 5.1, 5.1.1

Curtis Roads. Artificial intelligence and music. Computer Music Journal, 1980. 4.2.1

Adam Roberts, Jesse H. Engel, Colin Raffel, Curtis Hawthorne, and Douglas Eck. A hierar-

chical latent vector model for learning long-term structure in music. In 35th International

Conference on Machine Learning (ICML), volume 80 of Proceedings of Machine Learning

Research, pages 4361–4370, 2018. 2.4, 4.2.1

Gareth O Roberts and Richard L Tweedie. Exponential convergence of langevin distributions

and their discrete approximations. Bernoulli, pages 341–363, 1996. 2.7

John W Robinson and Stephen L Howell. Automatic arpeggiator. The Journal of the

Acoustical Society of America, 74(5):1666–1666, 1983. 6

Thomas Rossing. Springer handbook of acoustics. Springer, 2007. 2.1

Jonathan Le Roux, Scott Wisdom, Hakan Erdogan, and John R. Hershey. SDR - half-

baked or well done? In IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pages 626–630. IEEE, 2019. 5.3.5

208

Sam T. Roweis. One microphone source separation. In Proceedings of the 13th Advances in

Neural Information Processing Systems (Neurips), pages 793–799, 2000. 5.2.1

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng

Huang, Andrej Karpathy, Aditya Khosla, Michael S. Bernstein, Alexander C. Berg, and

Fei-Fei Li. Imagenet large scale visual recognition challenge. International Journal of

Computer Vision, 115(3):211–252, 2015. 3.2

Sara Sabour, Nicholas Frosst, and Geoffrey E. Hinton. Dynamic routing between capsules.

In Proceedings of the 30th Advances in Neural Information Processing Systems (Neurips),

pages 3856–3866, 2017. 5.3.5

Pasha Sadeghian, Casey Wilson, Stephen Goeddel, and Aspen Olmsted. Classification of

music by composer using fuzzy min-max neural networks. In 12th International Conference

for Internet Technology and Secured Transactions (ICITST), pages 189–192. IEEE, 2017.

4.3.1

Hiroaki Sakoe and Seibi Chiba. Dynamic programming algorithm optimization for spoken

word recognition. IEEE/ACM Transactions on Audio, Speech, and Language Processing,

26(1):43–49, 1978. 3.1, 3.1.4

Tim Salimans, Ian J. Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and

Xi Chen. Improved techniques for training gans. In Proceedings of the 29th Advances in

Neural Information Processing Systems (Neurips), pages 2226–2234, 2016. 4.2.5, 5.2.2

Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P. Kingma. Pixelcnn++: Improving

the pixelcnn with discretized logistic mixture likelihood and other modifications. In 5th

International Conference on Learning Representations (ICLR). OpenReview.net, 2017.

4.2.3, 5.1, 5.1, 5.3.2

Gerard Salton and Michael McGill. Introduction to Modern Information Retrieval. McGraw-

Hill Book Company, 1984. 3.3.6

209

Craig Stuart Sapp. Online database of scores in the humdrum file format. In Proceedings of

the 6th International Society for Music Information Retrieval Conference (ISMIR), pages

664–665, 2005. 3.1.4, 4, 4.2.2, 4.3.2

Mikkel N. Schmidt and Rasmus Kongsgaard Olsson. Single-channel speech separation us-

ing sparse non-negative matrix factorization. In 9th International Conference on Spoken

Language Processing (Interspeech). ISCA, 2006. 5.2.1

Mike Schuster and Kaisuke Nakajima. Japanese and korean voice search. In IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 5149–5152.

IEEE, 2012. 4.1.4

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare

words with subword units. In Proceedings of the 54th Annual Meeting of the Association

for Computational Linguistics (ACL). The Association for Computer Linguistics, 2016.

4.1.4

Shai Shalev-Shwartz, Joseph Keshet, and Yoram Singer. Learning to align polyphonic music.

In Proceedings of the 5th International Society for Music Information Retrieval Conference

(ISMIR), 2004. 3.1.2, 3.1.3

Claude Elwood Shannon. Communication in the presence of noise. Proceedings of the IRE,

1949. 4.1.2, 4.2

Roger N. Shepard. Geometrical approximations to the structure of musical pitch. Psycho-

logical Review, 89(4):305, 1982. 4.2.1

Zhengshan Shi, Craig Sapp, Kumaran Arul, Jerry McBride, and Julius O. Smith III. SUPRA:

digitizing the stanford university piano roll archive. In Proceedings of the 20th International

Society for Music Information Retrieval Conference (ISMIR), pages 517–523, 2019. 5.3.1

Galit Shmueli et al. To explain or to predict? Statistical Science, 25(3):289–310, 2010. 5.2.2

210

Rui Shu, Hung H Bui, Shengjia Zhao, Mykel J Kochenderfer, and Stefano Ermon. Amortized

inference regularization. In Advances in Neural Information Processing Systems, 2018. 2.4

Siddharth Sigtia, Emmanouil Benetos, Nicolas Boulanger-Lewandowski, Tillman Weyde,

Artur S. d’Avila Garcez, and Simon Dixon. A hybrid recurrent neural network for music

transcription. In IEEE International Conference on Acoustics, Speech and Signal Process-

ing (ICASSP), pages 2061–2065. IEEE, 2015. 3.3.1

Siddharth Sigtia, Emmanouil Benetos, and Simon Dixon. An end-to-end neural network for

polyphonic piano music transcription. IEEE/ACM Transactions on Audio, Speech, and

Language Processing, 24(5):927–939, 2016. 3.3.1

Patrice Y. Simard, David Steinkraus, and John C. Platt. Best practices for convolutional

neural networks applied to visual document analysis. In 7th International Conference on

Document Analysis and Recognition (ICDAR), pages 958–962. IEEE Computer Society,

2003. 3.3.1

Paris Smaragdis and Shrikant Venkataramani. A neural network alternative to non-negative

audio models. In IEEE International Conference on Acoustics, Speech and Signal Process-

ing (ICASSP), pages 86–90. IEEE, 2017. 5.2.1

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data

distribution. In Proceedings of the 32nd Advances in Neural Information Processing Sys-

tems (Neurips), pages 11895–11907, 2019. (document), 1, 2.2, 2.7, 2.7, 2.7, 5, 5.1, 5.1,

5.1.1, 5.1.2, 5.1.5, 5.1.5, 5.3.2, 5.9

Yang Song and Stefano Ermon. Improved techniques for training score-based generative

models. In Proceedings of the 33rd Advances in Neural Information Processing Systems

(Neurips), 2020. 5.1.5, 5.1.5

Yang Song, Sahaj Garg, Jiaxin Shi, and Stefano Ermon. Sliced score matching: A scalable

approach to density and score estimation. In Proceedings of the Thirty-Fifth Conference

211

on Uncertainty in Artificial Intelligence (UAI), volume 115 of Proceedings of Machine

Learning Research, pages 574–584, 2019. 2.7, 2.7

Yang Song, Chenlin Meng, Renjie Liao, and Stefano Ermon. Nonlinear equation solving:

A faster alternative to feedforward computation. arXiv Preprint arXiv:2002.03629, 2020.

5.1.1

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon,

and Ben Poole. Score-based generative modeling through stochastic differential equations.

In 9th International Conference on Learning Representations (ICLR). OpenReview.net,

2021. 5, 5.1.1, 5.1.2

Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro.

The implicit bias of gradient descent on separable data. The Journal of Machine Learning

Research, 19:2822–2878, 2018. 4.3

Ferréol Soulez, Xavier Rodet, and Diemo Schwarz. Improving polyphonic and poly-

instrumental music to score alignment. In Proceedings of the 4th International Society

for Music Information Retrieval Conference (ISMIR), 2003. 3.1.3, 3.2.2

Martin Spiertz and Volker Gnann. Source-filter based clustering for monaural blind source

separation. In Proceedings of the 12th International Conference on Digital Audio Effects,

2009. 5.2.1

Peter Steiner, Simon Stone, Peter Birkholz, and Azarakhsh Jalalvand. Multipitch tracking

in music signals using echo state networks. In 28th European Signal Processing Conference

(EUSIPCO), pages 126–130. IEEE, 2020. 3.3.6

Daniel Stoller, Sebastian Ewert, and Simon Dixon. Adversarial semi-supervised audio source

separation applied to singing voice extraction. In IEEE International Conference on Acous-

tics, Speech and Signal Processing (ICASSP), pages 2391–2395. IEEE, 2018a. 5.2.1

212

Daniel Stoller, Sebastian Ewert, and Simon Dixon. Wave-u-net: A multi-scale neural network

for end-to-end audio source separation. In Proceedings of the 19th International Society

for Music Information Retrieval Conference (ISMIR), pages 334–340, 2018b. 5.2.1

Bob L. Sturm, Joao Felipe Santos, Oded Ben-Tal, and Iryna Korshunova. Music transcription

modelling and composition using deep learning. Conference on Computer Simulation of

Musical Creativity, 2016. 4.2.1

Li Su and Yi-Hsuan Yang. Combining spectral and temporal representations for multipitch

estimation of polyphonic music. IEEE/ACM Transactions on Audio, Speech, and Language

Processing, 23(10):1600–1612, 2015a. 3.3.6

Li Su and Yi-Hsuan Yang. Escaping from the abyss of manual annotation: New methodology

of building polyphonic datasets for automatic music transcription. In International Sym-

posium on Computer Music Multidisciplinary Research (CMMR), pages 309–321, 2015b.

1, 3.2.1, 3.3.6

Y. Cem Sübakan and Paris Smaragdis. Generative adversarial source separation. In IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages

26–30. IEEE, 2018. 5.2.1

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural

networks. In Proceedings of the 27th Advances in Neural Information Processing Systems

(Neurips), pages 3104–3112, 2014. 3

Ayaka Takamoto, Mayu Umemura, Mitsuo Yoshida, and Kyoji Umemura. Improving com-

pression based dissimilarity measure for music score analysis. In International Conference

On Advanced Informatics: Concepts, Theory And Application (ICAICTA), pages 1–5.

IEEE, 2016. 4.3.1

Ayaka Takamoto, Mitsuo Yoshida, Kyoji Umemura, and Yuko Ichikawa. Feature selection

for composer classification method using quantity of information. In Proceedings of the

213

10th International Conference on Knowledge and Smart Technology (KST), pages 30–33.

IEEE, 2018. 4.3.1

Lucas Theis and Matthias Bethge. Generative image modeling using spatial lstms. In

Proceedings of the 28th Advances in Neural Information Processing Systems (Neurips),

pages 1927–1935, 2015. 5.1.1

Lucas Theis, Aäron van den Oord, and Matthias Bethge. A note on the evaluation of

generative models. In 4th International Conference on Learning Representations (ICLR).

OpenReview.net, 2016. 4.2, 5.3.5

John Thickstun, Zäıd Harchaoui, and Sham M. Kakade. Learning features of music from

scratch. In Proceedings of the 5th International Conference on Learning Representations

(ICLR). OpenReview.net, 2017. (document), 3.1, 3.6

Peter M. Todd. A connectionist approach to algorithmic composition. Computer Music

Journal, 13(4):27–43, 1989. 4.2.1

Jakub M. Tomczak and Max Welling. VAE with a vampprior. In 21st International Con-

ference on Artificial Intelligence and Statistics, (AISTATS), volume 84 of Proceedings of

Machine Learning Research, pages 1214–1223, 2018. 2.4

Chiheb Trabelsi, Olexa Bilaniuk, Ying Zhang, Dmitriy Serdyuk, Sandeep Subramanian,

João Felipe Santos, Soroush Mehri, Negar Rostamzadeh, Yoshua Bengio, and Christo-

pher J. Pal. Deep complex networks. In 6th International Conference on Learning Repre-

sentations (ICLR). OpenReview.net, 2018. 3.3.1, 3.3.4, 3.3.6, 3.3.5

Joel A. Tropp and Stephen J. Wright. Computational methods for sparse solution of linear

inverse problems. Proceedings of the IEEE, 98(6):948–958, 2010. 5.2

Daylin Troxel. Music transcription with a convolutional neural network 2016. MIREX

Multiple Fundamental Frequency Estimation & Tracking Task, 2016. 3.2, 3.3.6

214

Robert J. Turetsky and Daniel P. W. Ellis. Ground-truth transcriptions of real music from

force-aligned MIDI syntheses. In Proceedings of the 4th International Society for Music

Information Retrieval Conference (ISMIR), 2003. 3.1, 3.2.2, 3.2.2

Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky. Deep image prior. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),

pages 9446–9454, 2018. 5.2.1

Benigno Uria, Iain Murray, and Hugo Larochelle. RNADE: the real-valued neural autore-

gressive density-estimator. In Proceedings of the 26th Advances in Neural Information

Processing Systems (Neurips), pages 2175–2183, 2013. 2.3, 5.1, 5.1.3

Benigno Uria, Marc-Alexandre Côté, Karol Gregor, Iain Murray, and Hugo Larochelle. Neu-

ral autoregressive distribution estimation. Journal of Machine Learning Research (JMLR),

17:205:1–205:37, 2016. 2.3

Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex

Graves, Nal Kalchbrenner, Andrew W. Senior, and Koray Kavukcuoglu. Wavenet: A

generative model for raw audio. In The 9th ISCA Speech Synthesis Workshop, page 125.

ISCA, 2016a. 2.3, 5, 5.1, 5.3.2

Aäron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural

networks. In 33nd International Conference on Machine Learning (ICML), volume 48 of

Proceedings of Machine Learning Research, pages 1747–1756, 2016b. 2.3, 4.2.3, 5.1

Aäron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation

learning. In Proceedings of the 30th Advances in Neural Information Processing Systems

(Neurips), pages 6306–6315, 2017. 2.4, 5.1, 5.1.1

Aäron van den Oord, Yazhe Li, Igor Babuschkin, Karen Simonyan, Oriol Vinyals, Koray

Kavukcuoglu, George van den Driessche, Edward Lockhart, Luis C. Cobo, Florian Stim-

berg, Norman Casagrande, Dominik Grewe, Seb Noury, Sander Dieleman, Erich Elsen,

215

Nal Kalchbrenner, Heiga Zen, Alex Graves, Helen King, Tom Walters, Dan Belov, and

Demis Hassabis. Parallel wavenet: Fast high-fidelity speech synthesis. In 35th Interna-

tional Conference on Machine Learning (ICML), volume 80 of Proceedings of Machine

Learning Research, pages 3915–3923, 2018. 2.6, 5.1.1

Peter Van Kranenburg and Eric Backer. Musical style recognition: a quantitative approach.

In Handbook of Pattern Recognition and Computer Vision, pages 583–600. World Scientific,

2005. 4.3, 4.3.1, 4.3.5

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,

Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of the 30th

Advances in Neural Information Processing Systems (Neurips), pages 5998–6008, 2017.

2.3

Christophe Veaux, Junichi Yamagishi, Kirsten MacDonald, et al. Superseded-cstr vctk cor-

pus: English multi-speaker corpus for cstr voice cloning toolkit. 2016. 5.3.1

Gissel Velarde, Tillman Weyde, Carlos Eduardo Cancino Chacón, David Meredith, and

Maarten Grachten. Composer recognition based on 2d-filtered piano-rolls. In Proceedings

of the 17th International Society for Music Information Retrieval Conference (ISMIR),

pages 115–121, 2016. 4.3.1, 4.3.2, 4.3.4

Shrikant Venkataramani, Y. Cem Sübakan, and Paris Smaragdis. Neural network alternatives

to convolutive audio models for source separation. In 27th International Workshop on

Machine Learning for Signal Processing (MLSP), pages 1–6. IEEE, 2017. 5.2.1

Cédric Villani. Optimal Transport: Old and New. Springer, 2009. 2.5

Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-Antoine Man-

zagol. Stacked denoising autoencoders: Learning useful representations in a deep network

with a local denoising criterion. Journal of Machine Learning Research (JMLR), 11:3371–

3408, 2010. 2.4

216

Tuomas Virtanen. Monaural sound source separation by nonnegative matrix factorization

with temporal continuity and sparseness criteria. IEEE/ACM Transactions on Audio,

Speech, and Language Processing, 15(3):1066–1074, 2007. 5.2.1

Raunaq Vohra, Kratarth Goel, and Jajati Keshari Sahoo. Modeling temporal dependencies

in data using a DBN-LSTM. In IEEE International Conference on Data Science and

Advanced Analytics (DSAA), pages 1–4. IEEE, 2015. 4.2.1

Zheng Wang, Johnathan M. Bardsley, Antti Solonen, Tiangang Cui, and Youssef M. Mar-

zouk. Bayesian inverse problems with l1 priors: A randomize-then-optimize approach.

SIAM Journal on Scientific Computing, 39(5), 2017. 5.2

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assess-

ment: from error visibility to structural similarity. IEEE Transactions on Image Process-

ing, 13(4):600–612, 2004. 5.2.2

Ziyu Wang, Yiyi Zhang, Yixiao Zhang, Junyan Jiang, Ruihan Yang, Gus Xia, and Junbo

Zhao. PIANOTREE VAE: structured representation learning for polyphonic music. In

Proceedings of the 21th International Society for Music Information Retrieval Conference

(ISMIR), pages 368–375, 2020. 4.1.3

Max Welling and Yee Whye Teh. Bayesian learning via stochastic gradient langevin dy-

namics. In 28th International Conference on Machine Learning (ICML), Proceedings of

Machine Learning Research, pages 681–688, 2011. 5.1, 5.1.4

Auke J. Wiggers and Emiel Hoogeboom. Predictive sampling with forecasting autoregressive

models. In 37th International Conference on Machine Learning (ICML), volume 119 of

Proceedings of Machine Learning Research, pages 10260–10269, 2020. 5.1.1

Kevin W. Wilson, Bhiksha Raj, Paris Smaragdis, and Ajay Divakaran. Speech denoising

using nonnegative matrix factorization with priors. In Proceedings of the IEEE Interna-

217

tional Conference on Acoustics, Speech, and Signal Processing, (ICASSP), pages 4029–

4032. IEEE, 2008. 5.2.1

Jacek Wolkowicz and Vlado Keselj. Evaluation of n-gram-based classification approaches on

classical music corpora. In Proceedings of the 4th International Conference on Mathematics

and Computation in Music (MCM), Lecture Notes in Computer Science, pages 213–225.

Springer, 2013. 4.3.1, 4.3.4

Jacek Wo lkowicz, Zbigniew Kulka, and Vlado Kešelj. N-gram-based approach to composer

recognition. Archives of Acoustics, 33(1):43–55, 2008. 4.3.1

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang

Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva

Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato,

Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff

Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff

Hughes, and Jeffrey Dean. Google’s neural machine translation system: Bridging the gap

between human and machine translation. arXiv Preprint arXiv:1609.08144, 2016. 4.1.4

Wei Xiong, Jiahui Yu, Zhe Lin, Jimei Yang, Xin Lu, Connelly Barnes, and Jiebo Luo.

Foreground-aware image inpainting. In Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages 5840–5848, 2019. 1

Yilun Xu, Yang Song, Sahaj Garg, Linyuan Gong, Rui Shu, Aditya Grover, and Stefano

Ermon. Anytime sampling for autoregressive models via ordered autoencoding. In 9th

International Conference on Learning Representations (ICLR). OpenReview.net, 2021.

5.1.1

Adrien Ycart, Andrew McLeod, Emmanouil Benetos, and Kazuyoshi Yoshii. Blending acous-

tic and language model predictions for automatic music transcription. In Proceedings of

218

the 20th International Society for Music Information Retrieval Conference (ISMIR), pages

454–461, 2019a. 3.3.1

Adrien Ycart, Daniel Stoller, and Emmanouil Benetos. A comparative study of neural models

for polyphonic music sequence transduction. In Proceedings of the 20th International

Society for Music Information Retrieval Conference (ISMIR), pages 470–477, 2019b. 3.3.1

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features

in deep neural networks? In Proceedings of the 27th Advances in Neural Information

Processing Systems (Neurips), pages 3320–3328, 2014. 5.1.2

Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianxiong Xiao. LSUN: construction of

a large-scale image dataset using deep learning with humans in the loop. arXiv Preprint

arXiv:1506.03365, 2015. 5.3.1

Richard Zhang, Phillip Isola, and Alexei A. Efros. Colorful image colorization. In Proceedings

of the 14th European Conference on Computer Vision (ECCV), volume 9907, pages 649–

666. Springer, 2016. 5.3.6

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. Character-level convolutional networks for

text classification. In Proceedings of the 28th Advances in Neural Information Processing

Systems (Neurips), pages 649–657, 2015. 4.1.4

Xuaner Cecilia Zhang, Ren Ng, and Qifeng Chen. Single image reflection separation with

perceptual losses. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), pages 4786–4794, 2018a. 5.2.1

Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and Yun Fu. Residual dense network

for image super-resolution. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), pages 2472–2481, 2018b. 5.3.7

219

Yanhui Zhou, Jinghuai Gao, Wenchao Chen, and Pascal Frossard. Seismic simultaneous

source separation via patchwise sparse representation. IEEE Transactions on Geoscience

and Remote Sensing, 54(9):5271–5284, 2016. 6

Michael Zibulevsky and Barak A Pearlmutter. Blind source separation by sparse decompo-

sition in a signal dictionary. Neural Computation, 13(4):863–882, 2001. 5.2.1

220

Appendix A

EXTENDED LANGEVIN SAMPLING RESULTS

We fine-tuned the MNIST, CIFAR-10, and LSUN Glow models at 10 noise levels σ2 for 50

epochs each on clusters of 4 1080Ti GPU’s. This procedure converges rapidly, with no further

decrease of the negative log-likelihood after the first 10 epochs. Although Glow models

theoretically have full support, the noiseless pre-trained models assign vanishing probability

to highly noisy images. In practice, this can cause invertibility assertion failures when fine-

tuning directly from the noiseless model. To avoid this we took an iterative approach: first

fine-tune the lowest noise level σ = .01 from the noiseless model, then fine-tune the σ = .016

model from the σ = .01 model, etc. For PixelCNN++ CIFAR-10 models, we fine-tuned 20

noise models for 10 epochs each on a single 1080Ti GPU.

In concrete detail, a batch of 50 Langevin separation results for MNIST or CIFAR-

10 using NCSN takes < 5 minutes on a single 1080Ti GPU. Running Langevin sampling

with Glow or PixelCNN++ is much slower. A batch of 50 Langevin separation results

on MNIST or CIFAR-10 using Glow takes about 30 minutes on a 1080Ti. A batch of 9

Langevin separation result on LSUN using Glow takes 2-3 hours on a 1080Ti. We observe that

substantial time is spent loading and unloading each of the noisy models pσ from memory, so

the wall-clock sampling time for Glow could potentially be improved with engineering effort.

A batch of 16 Langevin separation results on CIFAR-10 using PixelCNN++ takes about 60

minutes on a 1080Ti.

221

A.1 Intermediate Results During Noise-Annealed Langevin Sampling

Mixture Separated 1 Separated 2

! = 1.0

! = 0.6

! = 0.36

! = 0.21

! = 0.01

Original

Figure A.1: Intermediate CIFAR-10 separation results taken at noise levels σ during the
annealing process of Langevin separation with an NCSN prior.

222

A.2 Additional PixelCNN++ Sampling Results

Ground Truth

Mixture Input

Output

+ = +=

Figure A.2: Additional uncurated results of Langevin source separation (Section 5.3.5) for
mixtures of CIFAR-10 test-set images using a PixelCNN++ prior trained on CIFAR-10.

223

Ground Truth Down-Sampled Input

Output

Figure A.3: Additional uncurated results of Langevin super-resolution (Section 5.3.7) applied
to down-sampled CIFAR-10 test-set images using a PixelCNN++ prior trained on CIFAR-10.

224

Ground Truth Masked Input

Output

Figure A.4: Additional uncurated results of Langevin inpainting (Section 5.3.8) applied to
masked CIFAR-10 test-set images using a PixelCNN++ prior trained on CIFAR-10.

225

A.3 Extended Glow LSUN Separation Results

NCSN

Original

Mixture

Separated

Original

Mixture

Separated

Figure A.5: Uncurated church/bedroom LSUN separation results using Glow as a prior.

226

A.4 Extended NCSN CIFAR-10 Separation Results

NCSN

OriginalSeparated

OriginalSeparated

Mixture

Mixture

Figure A.6: Uncurated class-agnostic CIFAR-10 separation results using NCSN as a prior.

227

A.5 Extended Glow CIFAR-10 Separation Results

NCSN

OriginalSeparated

OriginalSeparated

Mixture

Mixture

Figure A.7: Uncurated class-agnostic CIFAR-10 separation results using Glow as a prior.

228

A.6 Extended NCSN CIFAR-10 Colorization Results

NCSN

Grayscale

Colorized

Figure A.8: Uncurated CIFAR-10 colorization results using NCSN as a prior.

229

A.7 Extended Glow CIFAR-10 Colorization Results

Grayscale

Colorized

Glow

Figure A.9: Uncurated CIFAR-10 colorization results using Glow as a prior.

	List of Figures
	List of Tables
	Introduction
	Publications and Authorship

	Generative Models of Music
	Basic Definitions
	Generative Modeling
	Autoregressive Sequence Models
	Variational Autoencoders
	Generative Adversarial Networks
	Generative Flow
	Energy-Based Models

	Music Alignment and Transcription
	Audio-to-Score Alignment
	A Definition of an Alignment
	Alignment Algorithm Evaluation Metrics
	Related Work on Evaluating Alignments
	A Dataset of Ground-Truth Alignments

	The MusicNet Dataset
	Related Music Transcription Datasets
	Dataset Construction
	Quantitative Evaluation of Alignment Algorithms
	Validating the MusicNet Labels
	Alignment Parameter Robustness

	Music Transcription
	Related Work on Transcription
	A Frame-Based Transcription Task
	Learning from Spectrograms
	Learning Features of Music from Scratch
	Frequency-Invariant Networks
	Evaluating Transcription Models

	Conclusion

	Modeling Symbolic Representations of Music
	Symbolic Encodings of Music
	Sequential Encodings
	Tensor Encodings
	Hierarchical Encodings
	Encodings of Natural Language
	Encodings of Images

	Autoregressive Modeling of Musical Scores
	Related Work on Symbolic Generative Modeling
	Evaluation Methodology
	Factoring the Distribution over Scores
	Structure-Aware Models of Scores
	Revisiting Evaluation of Generative Models

	Classification Models for Musical Scores
	Related Work
	Corpus and Data Representation
	A Composer Attribution Task
	Model Architectures
	Results and Conclusions

	Conclusion

	Conditional Sampling from Generative Models
	Conditional Sampling via Langevin Dynamics
	Related Work on Sampling
	Smoothing a Joint Distribution
	Discretized Autoregressive Smoothing
	Stochastic Gradient Langevin Sampling
	Setting the Step Size

	Linear Inverse Problems and Source Separation
	Related Work on Source Separation
	Evaluation Methodology
	The Importance of Stochasticity

	Empirical Sampling Results
	Datasets
	Generative Priors
	Quality of Generated Samples
	Speed and Parallelism
	Source Separation
	Image Colorization
	Super-Resolution
	Inpainting

	Conclusion

	Conclusion and Perspectives
	Bibliography
	Extended Langevin Sampling Results
	Intermediate Results During Noise-Annealed Langevin Sampling
	Additional PixelCNN++ Sampling Results
	Extended Glow LSUN Separation Results
	Extended NCSN CIFAR-10 Separation Results
	Extended Glow CIFAR-10 Separation Results
	Extended NCSN CIFAR-10 Colorization Results
	Extended Glow CIFAR-10 Colorization Results

