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Learning a Distribution over Scores
Train a model to compose music by estimating a distribution py using
scores from a dataset of compositions D:

m
max Z po(S), where py(S) = Hpg,,-(Si]Sq).
¢ sep =1 CIFAR
e How to order the content of a score Sy, ...,S8,7
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ADVANCING DATA-INTENSIVE DISCOVERY IN ALL FIELDS

e How to featurize the history e = S¢;? %

e How to parameterize the conditional distributions pg;?

Ordering the Content of a Score Featurizing the History
Many variants, at least two main approaches: Again many variants, at least three high-level approaches:
e raster: discretize a score S into fine time-slices. Order e raster: can exploit pitch-domain structure via convo-
these slices temporally, and factor the distribution over lution, but requires a large history tensor.
slices.

e note-based: compact history tensor (list of notes)

e note-based: assign an order to notes in a score (e.g. but cannot easily exploit structure.

temporally, based on the time when the note begins) e run-length encoding of raster: can exploit pitch-
and factor the distribution over notes. domain structure with a compact history tensor.
We take the note-based approach. ‘We use run-length encoding of the history.

Parameterizing the Conditional Distributions With Coupled Voice Models

We build a recurrent estimate hy, of the state
of each voice v at index k. We couple these
estimates to construct a global estimate g of
the state of the full score at position k:

hiw(€) = a (W, hy—1,0(e) + W, e (er))

gr(e)=a (W;rgkl(e) + Wy, th,u(e)> -

We relativize the pitch predictor: instead of
(oo T B e ol Absolu : ll g' 2 2 =1 building an m-way classifier for each of the m
A4 | B4 A4 A4 solute B e i . N . . .
Al M — j ; 2 j = : *[M’g possible pitch classes, we build a single classifier
1 = that sees a shifted view of the history tensor e.
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