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MusicNet

A sample of labels from the MusicNet dataset:

An MLP learns frequency selective filters reminiscent of spectrograms

Frame-based Transcription Results
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A curated collection of labeled classical music

Spectrograms are approximately realizable by an MLP

A CNN trained on 16,384 samples to predict notes at the center of the frame.
Receptive field is 2,048 samples; stride is 8 samples. 
Features are pooled in groups of 16 with 50% overlap between pools.

A Convolutional Neural Network

MIREX-style results, computed by the mir_eval library
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Label MusicNet by aligning performances X to scores Y:
• synthesize a performance of Y
• define a cost between local frequency decompositions of

        i) the human performance (top left)
        ii) the synthesized performance (top right)
• find the minimum cost alignment (left) with DP (bottom left)
• map notes in the score to human performance timings

       via this alignment (bottom right)

Learned features of a (2-layer, ReLU) network mimic a windowed spectrogram (right).
Spectrogram-inspired features are a good low-level representation of music.


