Diffusion-LM Improves Controllable Text Generation

Xiang Lisa Li, **John Thickstun**, Ishaan Gulrajani, Percy Liang, Tatsunori B. Hashimoto Stanford University

Motivating Diffusion-LM

(Dhariwal and Nichol, 2021)

Diffusion models are now dominant in vision. Are they also good for language?

Diffusion-LM Introduction

Motivating Diffusion-LM: Classifier Guidance

- Diffusion models can be easily and convincingly steered using a probabilistic scoring function (e.g., a classifier).
- Analogous to "plug-and-play" language modeling (Dathathri et al., 2020).
- This post-hoc conditioning seems compelling:
 - train one general-purpose (expensive) generative model.
 - steer it for your specialized task at inference time.

(Dhariwal and Nichol, 2021)

Motivating Diffusion-LM

vibrant portrait painting of Salvador Dalí with a robotic half face

a shiba inu wearing a beret and black turtleneck

a close up of a handpalm with leaves growing from it

(Ramesh et al., 2022)

Classifier Guidance vs. Prompting: competing or complementary paradigms?

Diffusion-LM Introduction

- Constructing Diffusion-LM
 - ★ The Standard Diffusion Model (Ho et. al., 2020)
 - ★ Learning Word Embeddings (End-to-End Training)
 - **★** Predicting the Noiseless Embeddings
- Sampling from Diffusion-LM
 - ★ The Clamping Trick and Other Heuristics
 - ★ Classifier-Guided Control
- Experiments
- Discussion

- Constructing Diffusion-LM
 - ★ The Standard Diffusion Model (Ho et. al., 2020)
 - ★ Learning Word Embeddings (End-to-End Training)
 - ★ Predicting the Noiseless Embeddings
- Sampling from Diffusion-LM
 - ★ The Clamping Trick and Other Heuristics
 - ★ Classifier-Guided Control
- Experiments
- Discussion

- Constructing Diffusion-LM
 - **★** The Standard Diffusion Model (Ho et. al., 2020)
 - ★ Learning Word Embeddings (End-to-End Training)
 - ★ Predicting the Noiseless Embeddings
- Sampling from Diffusion-LM
 - ★ The Clamping Trick and Other Heuristics
 - ★ Classifier-Guided Control
- Experiments
- Discussion

Denoising Diffusion Probabilistic Models

Learn to generate data by progressive denoising.

Diffusion-LM

Denoising Diffusion Probabilistic Models

• Forward Process. Given *noise schedule* β_1, \ldots, β_T (hyper-parameters):

$$q(\mathbf{x}_t|\mathbf{x}_{t-1}) = \mathcal{N}\left(\mathbf{x}_t; \sqrt{1-\beta_t}\mathbf{x}_{t-1}, \beta_t I\right).$$

• **Reverse Process.** Learn to denoise with parameters θ :

$$p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1}; \mu_{\theta}(\mathbf{x}_t, t), \Sigma_{\theta}(\mathbf{x}_t, t)).$$

Optimizing a Diffusion Model

Optimize like a VAE (the usual variational lower bound):

$$-\log p_{\theta}(\mathbf{x}_{0}) = -\log \int_{\mathbf{x}_{1:T}} p_{\theta}(\mathbf{x}_{0:T}) d\mathbf{x}_{1:T} = -\log \mathbb{E}_{\mathbf{x}_{1:T} \sim q} \left[\frac{p_{\theta}(\mathbf{x}_{0:T})}{q(\mathbf{x}_{1:T}|\mathbf{x}_{0})} \right]$$

$$\leq \mathbb{E}_{\mathbf{x}_{1:T} \sim q} \left[-\log \frac{p_{\theta}(\mathbf{x}_{0:T})}{q(\mathbf{x}_{1:T}|\mathbf{x}_{0})} \right] = \mathbb{E}_{\mathbf{x}_{1:T} \sim q} \left[-\log q(\mathbf{x}_{T}) - \sum_{t=1}^{T} \log \frac{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})}{q(\mathbf{x}_{t}|\mathbf{x}_{t-1})} \right].$$

• Many small steps β_t make the Gaussian approximation $p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)$ valid.

In What Sense is this Denoising?

Rewrite the variational objective (algebra; see Ho et al., 2020; Appendix A):

$$\mathbb{E}_{\mathbf{x}_{1:T} \sim q} \left[D(q(\mathbf{x}_T | \mathbf{x}_0) \parallel p(\mathbf{x}_T)) + \sum_{t=1}^T D(q(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{x}_0) \parallel p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t)) - \log p_{\theta}(\mathbf{x}_0 | \mathbf{x}_1) \right].$$

• Want to make $p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)$ look like the posterior distribution $q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0)$.

- Constructing Diffusion-LM
 - ★ The Standard Diffusion Model (Ho et. al., 2020)
 - ★ Learning Word Embeddings (End-to-End Training)
 - ★ Predicting the Noiseless Embeddings
- Sampling from Diffusion-LM
 - ★ The Clamping Trick and Other Heuristics
 - ★ Classifier-Guided Sampling
- Experiments
- Discussion

- Constructing Diffusion-LM
 - ★ The Standard Diffusion Model (Ho et. al., 2020)
 - **★** Learning Word Embeddings (End-to-End Training)
 - ★ Predicting the Noiseless Embeddings
- Sampling from Diffusion-LM
 - ★ The Clamping Trick and Other Heuristics
 - ★ Classifier-Guided Sampling
- Experiments
- Discussion

Learning Word Embeddings

- Standard DDPM assumes inputs x_0 are continuous.
- Language model inputs w are discrete tokens.
- Use the re-parameterization trick to learn word embeddings $q_{\phi}(\mathbf{x}_t|\mathbf{w})$:

$$-\log p_{\theta}(\mathbf{x}_{0}) \leq \mathbb{E}_{\substack{\mathbf{x}_{1:T} \sim q \\ \mathbf{x}_{0} \sim q_{\phi}}} \left[-\log q(\mathbf{x}_{T}) - \sum_{t=1}^{T} \log \frac{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})}{q(\mathbf{x}_{t}|\mathbf{x}_{t-1})} - \log p_{\theta}(\mathbf{w}|\mathbf{x}_{0}) \right].$$

Are These Learned Embeddings Meaningful?

- Learning the embedding seems important.
- Random embeddings performed poorly.
- Pre-trained embeddings from an AR model also performed poorly.

A t-SNE plot of learned embeddings, colored according to POS.

Diffusion-LM

Embeddings

- Constructing Diffusion-LM
 - ★ The Standard Diffusion Model (Ho et. al., 2020)
 - ★ Learning Word Embeddings (End-to-End Training)
 - ★ Predicting the Noiseless Embeddings
- Sampling from Diffusion-LM
 - ★ The Clamping Trick and Other Heuristics
 - ★ Classifier-Guided Sampling
- Experiments
- Discussion

- Constructing Diffusion-LM
 - ★ The Standard Diffusion Model (Ho et. al., 2020)
 - ★ Learning Word Embeddings (End-to-End Training)
 - **★** Predicting the Noiseless Embeddings
- Sampling from Diffusion-LM
 - ★ The Clamping Trick and Other Heuristics
 - ★ Classifier-Guided Sampling
- Experiments
- Discussion

Predicting the Noiseless Embeddings

- We want to minimize terms $D(q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0) \parallel p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t))$, where $p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) = \mathcal{N}\left(\mathbf{x}_{t-1}; \mu_{\theta}(\mathbf{x}_t,t), \Sigma_{\theta}(\mathbf{x}_t,t)\right)$.
- Closed form for the posteriors: $q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_{t-1};\tilde{\mu}_t(\mathbf{x}_t,\mathbf{x}_0),\tilde{\beta}_t I)$, where $\tilde{\mu}_t(\mathbf{x}_t,\mathbf{x}_0) = r_t\mathbf{x}_t + s_t\mathbf{x}_0$.
- And $r_t, s_t, \tilde{\beta}_t$ are constants derived from the noise schedule β_1, \ldots, β_T .

Predicting the Noiseless Embeddings

- Directly parameterize $\mu_{\theta}(\mathbf{x}_t, t)$ to approximate $\tilde{\mu}_t(\mathbf{x}_t, \mathbf{x}_0) = r_t \mathbf{x}_t + s_t \mathbf{x}_0$?
- But we already know x_t .
- Ho et al., 2020: write $\mathbf{x}_0 = \mathbf{x}_t \boldsymbol{\varepsilon}_t$, predict $\boldsymbol{\varepsilon}_t \approx \boldsymbol{\varepsilon}_{\theta}(\mathbf{x}_t, t)$ and reparameterize $\mu_{\theta}(\mathbf{x}_t, t) = (r_t + s_t)\mathbf{x}_t s_t\boldsymbol{\varepsilon}_{\theta}(\mathbf{x}_t, t)$.
- Li et al., 2022: predict $\mathbf{x}_0 \approx f_{\theta}(\mathbf{x}_t, t)$ and reparameterize

$$\mu_{\theta}(\mathbf{x}_t, t) = r_t \mathbf{x}_t + s_t f_{\theta}(\mathbf{x}_t, t).$$

- Constructing Diffusion-LM
 - ★ The Standard Diffusion Model (Ho et. al., 2020)
 - ★ Learning Word Embeddings (End-to-End Training)
 - **★** Predicting the Noiseless Embeddings
- Sampling from Diffusion-LM
 - ★ The Clamping Trick and Other Heuristics
 - ★ Classifier-Guided Sampling
- Experiments
- Discussion

- Constructing Diffusion-LM
 - ★ The Standard Diffusion Model (Ho et. al., 2020)
 - ★ Learning Word Embeddings (End-to-End Training)
 - ★ Predicting the Noiseless Embeddings
- Sampling from Diffusion-LM
 - **★** The Clamping Trick and Other Heuristics
 - ★ Classifier-Guided Sampling
- Experiments
- Discussion

Sampling from Diffusion-LM

- Sample from a Gaussian $\mathbf{x}_T \sim \mathcal{N}(0, I)$ and then just follow the chain.
- Sampling Diffusion-LM requires T (diffusion steps) model calls.
- In contrast, sampling AR models requires L (sequence length) model calls.
- In our experiments, $T\gg L$ so sampling is slow.

Sampling Heuristics

- Analogous AR sampling heuristics can be applied to Diffusion-LM.
- Temperature sampling: reduce the noise at each sampling step.
- Nucleus sampling: truncate the tails of the Gaussian noise.
- Minimum Bayes Risk (MBR) decoding.

The Clamping Trick

- At each step we predict $\mathbf{x}_0 pprox f_{\theta}(\mathbf{x}_t,t)$.
- The clamping trick: instead predict the nearest embedding in the dictionary:

$$\mathbf{x}_0 \approx \operatorname{Clamp}(f_{\theta}(\mathbf{x}_t, t)).$$

This seems to nudge Diffusion-LM to commit to tokens earlier.

- Constructing Diffusion-LM
 - ★ The Standard Diffusion Model (Ho et. al., 2020)
 - ★ Learning Word Embeddings (End-to-End Training)
 - **★** Predicting the Noiseless Embeddings
- Sampling from Diffusion-LM
 - ★ The Clamping Trick and Other Heuristics
 - ★ Classifier-Guided Sampling
- Experiments
- Discussion

- Constructing Diffusion-LM
 - ★ The Standard Diffusion Model (Ho et. al., 2020)
 - ★ Learning Word Embeddings (End-to-End Training)
 - **★** Predicting the Noiseless Embeddings
- Sampling from Diffusion-LM
 - ★ The Clamping Trick and Other Heuristics
 - **★ Classifier-Guided Sampling**
- Experiments
- Discussion

Classifier-Guided Sampling

- Given: labeled data pairs (\mathbf{x}, \mathbf{c}) describing the desired attribute \mathbf{c} .
- Goal: sample from the posterior distribution $p_{\theta}(\mathbf{x}_{0:T}|\mathbf{c}) = \prod_{t=1}^{T} p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{c}).$
- Each term can be rewritten as $p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{c}) \propto p_{\theta}(\mathbf{c}|\mathbf{x}_{t-1}, \mathbf{x}_t)p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)$.
- The term $p_{\theta}(\mathbf{c}|\mathbf{x}_{t-1},\mathbf{x}_t)$ is a classifier. And $p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)$ is Diffusion-LM.
- In practice, the classifier doesn't need to see both x_t and x_{t-1} .
- Train the classifier $p_{\theta}(\mathbf{c}|\mathbf{x}_{t-1})$ on noisy data.

Langevin Dynamics

- Goal: sample from the posterior $p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{c})$.
- Langevin Dynamics: define a Markov chain

$$\mathbf{x}_{t-1}^{(i+1)} = x_{t-1}^{(i)} - \eta \nabla_{\mathbf{x}_{t-1}} \log p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{c}) + \sqrt{2\eta} \varepsilon_i, \text{ where } \varepsilon_i \sim \mathcal{N}(0, I).$$

• For small η , as $i \to \infty$, $D(\mathbf{x}_{t-1}^{(i+1)} \parallel p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{c})) \to 0$. The gradient is:

$$\nabla_{\mathbf{x}_{t-1}} \log p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t}, \mathbf{c}) = \nabla_{\mathbf{x}_{t-1}} \log p_{\theta}(\mathbf{c}|\mathbf{x}_{t-1}) + \nabla_{\mathbf{x}_{t-1}} \log p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t}).$$
Classifier Score
Diffusion-LM

• In practice, init $\mathbf{x}_{t-1}^{(0)} \sim p_{\theta}(\mathbf{x}_{t-1}, \mathbf{x}_{t}^{(1)})$ (warmstart) and take just one step.

Iterative Gradient-Based Control

- Conceptually similar to PPLM (Dathathri et al., 2020).
- But control is applied coarse-to-fine, instead of left-to-right.

- Constructing Diffusion-LM
 - ★ The Standard Diffusion Model (Ho et. al., 2020)
 - ★ Learning Word Embeddings (End-to-End Training)
 - ★ Predicting the Noiseless Embeddings
- Sampling from Diffusion-LM
 - ★ The Clamping Trick and Other Heuristics
 - ★ Classifier-Guided Sampling
- Experiments
- Discussion

- Constructing Diffusion-LM
 - ★ The Standard Diffusion Model (Ho et. al., 2020)
 - ★ Learning Word Embeddings (End-to-End Training)
 - **★** Predicting the Noiseless Embeddings
- Sampling from Diffusion-LM
 - ★ The Clamping Trick and Other Heuristics
 - ★ Classifier-Guided Sampling
- Experiments
- Discussion

Datasets

- Two datasets: E2E and ROCStories.
- **E2E**. 50k restaurant reviews. Sample text: "Browns Cambridge is good for Japanese food and also children friendly near The Sorrento."
- **ROCStores**. 98k short stories. Sample text: "Jennifer has a big exam tomorrow. She got so stressed, she pulled an all-nighter. She went into class the next day, weary as can be. Her teacher stated that the test is postponed for next week. Jennifer felt bittersweet about it."
- Small datasets: scaling up Diffusion-LM is an open problem.

Diffusion-LM Experiments

Control Tasks

input (Semantic Content) output text	food: Japanese Browns Cambridge is good for Japanese food and also children friendly near The Sorrento.
input (Parts-of-speech) output text	PROPN AUX DET ADJ NOUN NOUN VERB ADP DET NOUN ADP DET NOUN PUNCT Zizzi is a local coffee shop located on the outskirts of the city .
input (Syntax Tree) output text	(TOP (S (NP (*) (*) (*)) (VP (*) (NP (NP (*) (*)))))) The Twenty Two has great food
input (Syntax Spans) output text	(7, 10, VP) Wildwood pub serves multicultural dishes and is ranked 3 stars
input (Length) output text	14 Browns Cambridge offers Japanese food located near The Sorrento in the city centre.
input (left context) input (right context) output text	My dog loved tennis balls. My dog had stolen every one and put it under there. One day, I found all of my lost tennis balls underneath the bed.

• Six controllable generation tasks.

Diffusion-LM Experiments

Baselines

- For classifier-guided control:
 - ► PPLM (Dathathri et al., 2020).
 - FUDGE (Yang and Klein, 2021).
 - Finetuning (skyline).
- For infilling:
 - ► DELOREAN (Qin et al., 2020).
 - ► COLD (Qin et al., 2021).
 - Finetuning (skyline).

A Qualitative Example

Syntactic Parse	(S(S(NP*)(VP*(NP(NP**)(VP*(NP(ADJP**)*)))))*(S(NP***)(VP*(ADJP(ADJP*)))))
FUDGE Diffusion-LM FT	Zizzi is a cheap restaurant. [incomplete] Zizzi is a pub providing family friendly Indian food Its customer rating is low Cocum is a Pub serving moderately priced meals and the customer rating is high
Syntactic Parse	(S(S(VP*(PP*(NP**))))*(NP***)(VP*(NP(NP**)(SBAR(WHNP*)(S(VP*(NP**))))))*)
FUDGE	In the city near The Portland Arms is a coffee and fast food place named The Cricketers which is not family - friendly with a customer rating of 5 out of 5.
Diffusion-LM FT	Located on the riverside, The Rice Boat is a restaurant that serves Indian food. Located near The Sorrento, The Mill is a pub that serves Indian cuisine.

- FUDGE and Finetuning (FT) deviate after a few tokens (exposure bias).
- Diffusion-LM is robust to local failures to apply the control.

- Constructing Diffusion-LM
 - ★ The Standard Diffusion Model (Ho et. al., 2020)
 - ★ Learning Word Embeddings (End-to-End Training)
 - ★ Predicting the Noiseless Embeddings
- Sampling from Diffusion-LM
 - ★ The Clamping Trick and Other Heuristics
 - ★ Classifier-Guided Sampling
- Experiments
- Discussion

- Constructing Diffusion-LM
 - ★ The Standard Diffusion Model (Ho et. al., 2020)
 - ★ Learning Word Embeddings (End-to-End Training)
 - ★ Predicting the Noiseless Embeddings
- Sampling from Diffusion-LM
 - ★ The Clamping Trick and Other Heuristics
 - ★ Classifier-Guided Sampling
- Experiments
- Discussion

Limitations

- Decoding is much slower than AR Transformer models: 2000 diffusion steps versus (short) sequence-length AR steps.
- Training seems to converge more slowly than for AR models.
- Diffusion-LM has higher perplexity than comparably-sized AR models.
- Similar challenges for diffusion models of images have been observed and overcome, so there is reason to be hopeful!

Coarse-to-Fine Generation

- Coarse-to-fine generation seems helpful for control (versus autoregressive generation) because the control target can be incorporated globally into the plan for generating text.
- You can use Langevin dynamics to sample coarse-to-fine from AR models fine-tuned in noisy data (Jayaram and Thickstun, 2021)
- A mystery: I spent several months trying to adapt these methods to text, but couldn't get the sampling to work very well.
- Maybe coarse-to-fine isn't the only thing that's going right here?

Non-Autoregressive Language Generation

- Previously non-autoregressive open-ended language generation has seemed difficult (GAN, VAE).
- Adapting the DDPM recipe to text required some alterations, but if similarlyscoped alterations would make VAE's work well for text it seems like this would have happened by now.
- What (if anything) is different about diffusion models?

Continuous vs. Discrete Models

- NLP folks spend a lot of time trying to convert their discrete data into continuous representations.
- Vision folks spend a lot of time trying to convert their continuous data into discrete representations.
 - VQ-VAE2 (Razavi et al., 2019)
 - VQ-GAN (Esser et al., 2021)
 - Parti (Yu et al., 2022)
- What is going on here?

Thank You!

Paper: https://arxiv.org/abs/2205.14217

Code: https://github.com/XiangLi1999/Diffusion-LM

Diffusion-LM